
Windows PowerPro Page T Version 3.7 

 
 
 
 
 
 
 
 

Windows PowerPro  
 

Version 3.7 
 

Feb 2002 
 

sherip
PDF Created 1/24/03

sherip
Launch Help File

sherip
Launch Scripting Tutorial



Windows PowerPro Page i Version 3.7 

 
 

- operator .................................................109 
!= ne operator ..........................................109 
% operator ...............................................109 
& and operator .........................................109 
* operator .................................................109 
*Bar Command ..........................................51 
*Clip Command .........................................62 
*Desktop Command ..................................65 
*Exec CD ...................................................72 
*Exec Commandline ..................................69 
*Exec Commands......................................67 
*Exec mute ................................................72 
*Exec Prompt.............................................72 
*Exec ToFile ..............................................72 
*Exec volumewav ......................................72 
*File Commands ........................................74 
*Format Command ....................................84 
*Keys Command........................................78 

Example .................................................80 
*Menu Commands.....................................87 
*Menu Explorer ..........................................96 
*Menu Folder 

Demo....................................................145 
*Message Command.................................97 
*ScreenSaver Command...........................97 
*Shutdown Command..........................51, 97 
*Timer Commands.....................................45 
*Wait Command ......................................126 
*Window Command.................................128 

Specifying Actions................................129 
Specifying WindowID ...........................131 

*Windows Commands 
Demo....................................................144 

/ operator .................................................109 
| or operator .............................................109 
+ operator ................................................109 
++ operator ......................................109, 110 
< lt operator .............................................109 
<= le operator ..........................................109 
== eq operator .........................................109 
>  gt operator ...........................................109 
>=  ge operator ........................................109 
2XExplorer .................................................96 
activewindow function..............................108 

Alarms 
Suspending ........................................... 68 

alt keyword.............................................. 106 
anywindow function ................................ 108 
Arrays (single-dimension vectors) .......... 178 
assign function........................................ 110 
Assign variable ................................. 98, 100 
Autochanges 

Media (Sounds, Wallpaper, 
Screensavers) ................................... 48 

AutoIt DLL Plugin.................................... 166 
Autorun when a Window Opens 

Demo................................................... 146 
Bar 

Buttons from Files and Folders ............. 29 
Bars........................................................... 51 

Adding Buttons...................................... 57 
Appearance........................................... 60 
Autohide Bar.......................................... 59 
Changing Buttons.................................. 58 
Click Main to Show Another .................. 53 
Creating................................................. 59 
Deleting Buttons.................................... 58 
Drag and Drop onto............................... 56 
Formatting ............................................. 84 
In or Beside Foreground Window ......... 60 
Invisible ................................................. 23 
Keyboard Access .................................. 56 
Moving Floating Bars ............................ 58 
Positoning.............................................. 58 
Removing .............................................. 60 
Screen Edge ......................................... 53 
Section Buttons ..................................... 55 
Using Subbars....................................... 54 

Bars and Windows 
Only open with Specific Applications .... 95 

batterypercent keyword .......................... 107 
browserDomain keyword ........................ 107 
browserSubdomain keyword .................. 107 
browserURL keyword ............................. 107 
Caps Lock................................................. 11 
caption keyword...................................... 106 
captionunder keyword............................. 106 
case function........................................... 110 



Windows PowerPro Page ii Version 3.7 

Case string operator ................................111 
CD Audio Player controls ..........................72 
cdcurtrack keyword..................................106 
cdlasttrack keyword .................................106 
Clip Filters..................................................64 
clip keyword.............................................107 
Clipboard 

History Tracking .....................................63 
Manipulation, Tracking and Copying .....62 

cliptrackon keyword .................................107 
Command 

Entry Controls ........................................49 
Command Line Execution .......................136 
Command List 

Items ......................................................16 
Properties.............................21, 27, 28, 53 
Setup Dialog ..........................................24 

Command Lists..........................................15 
Command Scripts ......................................98 
Commands 

Autorun when Windows Open ...............31 
PowerPro Built-in ...................................50 
Running Multiple ....................................49 

Conditional processing in Scripts ......98, 101 
Configuration ...............................................3 

Advanced Options....................................6 
GUI Control Options...............................11 
Importing and Exporting Text Files ..........8 
Setup Dialog ......................................4, 24 

Configuration Files 
Sharing with other Users .....................159 

Contact for Questions or Support............160 
Copy file.....................................................74 
cpu keyword ............................................106 
ctrl keyword..............................................106 
currentdir keyword ...................................106 
Date Calculations ......................................71 
Date Format...............................................18 
date keyword ...........................................106 
Date Plugin ..............................................167 
dayofweek keyword .................................106 
dayofyear keyword ..................................106 
Debug Scripts ............................................98 
defaultprinter keyword .............................106 
Delete file...................................................74 
Demonstrations and Samples .................143 

deskempty keyword ................................ 106 
deskname keyword................................. 106 
desknum keyword................................... 106 
Desktop Command ................................... 65 
Dialogs 

Open/Save and Favorite Files and 
Folders............................................. 134 

disk keyword ........................................... 106 
diskspace function .................................. 110 
dunidle keyword...................................... 106 
dunrate keyword ..................................... 106 
env function............................................. 108 
Event Plugin............................................ 169 
Examples ................................................ 143 

*Menu Folder....................................... 145 
*Window Commands........................... 144 
Hot Keys and Mouse Actions.............. 145 
Keyboard Macros ................................ 146 
Keys Commands................................... 80 
Menus and Context Menus ................. 143 
Running Commands when a Window First 

Opens .............................................. 146 
Sending Keys with *Keys .................... 144 
Subbars and Manually Shown Bars.... 143 

Exec Commands ...................................... 67 
exefilename keyword .............................. 106 
exefullpath keyword ................................ 106 
Explorer 

Customizing the Context Menu............. 32 
Explorer List and View Settings.................. 6 
Explorer Windows..................................... 96 
Expressions ............................................ 104 

refer to Expressions.Txt ...................... 115 
Sample Script ...................................... 115 

FAQ......................................................... 139 
Favorite Folders and File/Open Save 

Dialogs ................................................ 134 
Features 

Overview ................................................. 1 
Summary ............................................. 141 

File 
Change Extension................................. 74 
Copy ...................................................... 74 
Delete .................................................... 74 
Move...................................................... 74 
Random File useage ....................... 74, 75 
Rename................................................. 74 



Windows PowerPro Page iii Version 3.7 

Writng Entries To ...................................72 
File Plugin ................................................172 
filemenu function .....................................108 
Files 

Favorites used in Dialogs ....................134 
fill function................................................110 
Fill string operator....................................111 
Flags in Scripts ..................................98, 104 
Float Plugin..............................................175 
Folder 

Working with Large Tree........................94 
Folders 

Favorites used in Dialogs ....................134 
Special Folders for *Menu Commands..91 

FormatDate and FormatTime ..................113 
formatdate function..................................110 
formattime function ..................................110 
Formatting Menus and Bars with *Format.84 
Frequently Asked Questions (with Answers)

.............................................................139 
gdi keyword..............................................106 
Handles of Windows................................131 
Hot Keys ....................................................35 

Applicable to Specific Windows .............38 
Hotkeys and Mouse Actions 

Demo....................................................145 
Icons 

Saving and Restoring Desktop Postions65 
Tray Icons from Other Programs .........120 

if function .................................................110 
ifelse function...........................................110 
index function...........................................110 
Index string operator................................111 
Info Displays ..............................................20 
input function ...........................................108 
inputcancel function.................................108 
inputcolor keyword...................................107 
inputdate keyword ...................................107 
inputdatetime keyword.............................107 
inputdefault function ................................110 
InputDialog...............................................113 
inputdialog function..................................110 
inputfolder keyword .................................107 
inputpath keyword ...................................107 
inputtext keyword.....................................107 
Items 

Formatting ............................................. 84 
Join function.................................... 109, 110 
Join string operator ................................. 111 
Keyboard Macros............................ 133, 141 

Demo................................................... 146 
keylogfile keyword .................................. 107 
Keys 

Caps Lock, Num Lock, and Scroll Lock 11 
Hot Keys................................................ 35 
Special Keys.......................................... 77 

Keystrokes 
Logging.................................................. 70 

Keyword Values...................................... 106 
Labels 

Dynamic on Buttons and Menus ........... 17 
Labels in Scripts ............................... 98, 104 
lastactivehandle keyword........................ 107 
lastautorunhandle keyword..................... 107 
lastclipname keyword ............................. 107 
lastclippath keyword ............................... 107 
lastidletime keyword ............................... 107 
length function......................................... 108 
Length string operator............................. 111 
License and Warranty................................. 2 
Log 

Alarm ..................................................... 42 
Timer ..................................................... 46 

longdate keyword.................................... 106 
Loops in Scripts ................................ 98, 102 
Macros 

Keyboard ..................................... 133, 141 
max function............................................ 110 
mci function............................................. 108 
Menu Folders 

Appearance..................................... 89, 92 
Menus 

Displaying.............................................. 87 
Formatting ............................................. 84 

Menus and Context Menu 
Demo................................................... 143 

Message 
Displaying with *Message ..................... 97 

MessageBox ................................... 112, 173 
messagebox function.............................. 110 
min function............................................. 110 
modem keyword ..................................... 107 



Windows PowerPro Page iv Version 3.7 

mounted function .....................................108 
Mouse 

Automatically Moving the Mouse Cursor 
to a Dialog Button.................................4 

Pressing Buttons Automatically .............14 
Scrolling ...........................................12, 13 
Sending a Sequence of Clicks and Moves

............................................................85 
Mouse Actions ...........................................35 
mouseleft keyword...................................106 
mousemiddle keyword.............................106 
mouseright keyword ................................106 
Move file ....................................................74 
muted keyword ........................................107 
not function ..............................................108 
Notes 

Creating and Maintaining Reminders .148, 
149, 150 

Num Lock...................................................11 
paper keyword .........................................107 
Plugins .............................................161, 162 

Au (AutoIt DLL) ....................................166 
Date......................................................167 
Event ....................................................169 
File .......................................................172 
Float .....................................................175 
RegEx ..................................................183 
Vec .......................................................178 
Win .......................................................181 

pmem keyword ........................................106 
pprofolder keyword ..................................106 
pproversion keyword ...............................106 
processcount keyword.............................106 
Purchasing PowerPro..............................138 
Random Files ............................................75 
random function.......................................108 
readline function ......................................111 
recycleItems keyword ..............................107 
recycleSize keyword................................107 
RegEx Plugin ...........................................183 
Regular Expressions ...............................183 
Reminders .............................. 148, 149, 150 
remove function .......................................110 
Remove string operator ...........................111 
Rename file................................................74 
replacechars function ..............................110 
ReplaceChars string operator .................111 

Resolution 
Changing Screen .................................. 66 

Resource Usage Displays ........................ 19 
revindex function..................................... 110 
RevIndex string operator ........................ 111 
Run commandlist ...................................... 98 
RunFile...................................................... 98 
saver keyword......................................... 107 
saveractive keyword ............................... 107 
Scheduling Commands....... 3, 39, 41, 42, 48 
Scheduling Commands to run when system 

is idle ..................................................... 42 
Screen Saver 

Accessing with *ScreenSaver ............... 97 
Autochanging ........................................ 48 

Script 
Commands............................................ 98 
Keywords............................................. 106 
PPST Tutorial .................................... 2, 98 
Running from a file .............................. 117 
Sample ................................................ 115 
Wait Command ................................... 126 

Scroll Lock ................................................ 11 
select function......................................... 110 
Select string operator.............................. 111 
Sending Frequently used Folder Names to 

Dialogs .................................................. 82 
Sending Keys 

Demo................................................... 144 
Selecting Keys from a Menu ................. 81 
to Other Windows............................ 77, 78 
to Programs when Started .................... 81 

shift keyword........................................... 106 
shortdate keyword .................................. 106 
Shutdown Windows or PowerPro ....... 51, 97 
Skins ............................... 150, 151, 152, 153 

Creating............................................... 152 
Using ................................................... 150 

Sound Volume .......................................... 72 
Sounds 

Autochanging ........................................ 48 
Stiletto ..................................................... 137 
String 

Escape characters in........................... 105 
Operators ............................................ 111 

Subbarname keyword............................. 106 



Windows PowerPro Page v Version 3.7 

Subbars and Manually Shown Bars 
Demo....................................................143 

threadcount keyword ...............................106 
Time Format ..............................................18 
time keyword............................................106 
timer function ...........................................108 
Timers....................................................3, 44 
timesec keyword......................................106 
timezone keyword....................................106 
Tiny Type and Run Dialog .........................69 
Tool Tips ....................................................23 
Tray 

Buttons ...................................................29 
Icons...............................................28, 120 
Minimize Window to .................................5 

uptime keyword .......................................106 
user keyword ...........................................106 
validpath function.....................................108 
Values......................................................105 
Variables..................................................100 
vdeskempty function................................108 
vdeskhaswindow function........................111 
Vec Plugin................................................178 
Vectors.....................................................178 
Virtual Desktop 

Demo....................................................147 
Virtual Desktop Sample ...........................147 
Virtual Desktops ............. 121, 123, 124, 125 
visiblewindow function .............................108 
volume keyword.......................................107 

Wait Command ....................................... 126 
Wallpaper................................................ 121 

Autochanging ........................................ 48 
win keyword ............................................ 106 
Win Plugin............................................... 181 
Window 

ActiveWindow Operator ...................... 114 
AnyWindow Operator .......................... 114 
Information (e.g., Position, Size, State, 

Class, Caption, Handle)..................... 14 
Manipulate Running Program's........... 128 
Switching Active with Buttons ............... 26 
VisibleWindow Operator...................... 114 
Window Operator ................................ 114 

Window Command ................................. 128 
window function ...................................... 111 
Window Handles..................................... 131 
Windows 

Autohiding ............................................. 10 
Hiding .................................................... 30 
Resources Display ................................ 19 
Word Exclusions ................................... 30 

word function........................................... 110 
xmouse keyword..................................... 107 
xscreen keyword..................................... 107 
xtime keyword......................................... 106 
Yes/No Prompts........................................ 72 
ymouse keyword..................................... 107 
yscreen keyword..................................... 107 

 



Windows PowerPro Page a Version 3.7 

Table of Contents 
 

Overview.......................................................................................................... 1 
PowerPro License and Warranty .................................................................... 2 
Configuring PowerPro ..................................................................................... 3 
Setup Dialog .................................................................................................... 4 

Automatically Moving the Mouse Cursor to a Dialog Button........................ 4 
Minimizing a Window to the Tray ................................................................. 5 
Changing Explorer List and View Settings ................................................... 6 
Advanced configuration options ................................................................... 6 
Exporting and Importing Configurations Using Text Files............................ 8 
Automatically Hiding Windows ................................................................... 10 

GUI Control Configuration Options ............................................................... 11 
Caps Lock, Num Lock,  and Scroll Lock .................................................... 12 
Scrolling with Mouse Movements............................................................... 12 
Manual Scrolling with Mouse...................................................................... 12 
Automatic Scrolling with the Mouse ........................................................... 13 
Automatically Pressing Buttons when Mouse is Stopped over Them........ 14 
See Mouse Cursor Position and Window Information ............................... 14 

Command Lists Dialog .................................................................................. 15 
Configuring a Command List Item.............................................................. 16 
Special Labels for Buttons.......................................................................... 17 
Date and Time Format................................................................................ 18 
Resource Usage Displays .......................................................................... 19 
Other Displays ............................................................................................ 20 
Command List Properties........................................................................... 21 
Tool Tip Setup ............................................................................................ 23 
Working with Invisible Bars ........................................................................ 23 
Command List Setup Dialog....................................................................... 24 
Active Window Switching with Buttons....................................................... 26 
Working with Tray Icons ............................................................................. 28 
Creating Bar Buttons from the Files and Subfolders of a Folder ............... 29 
Tray Icon Buttons ....................................................................................... 29 
Omitting Windows and Words from Active Window Lists .......................... 30 
Hiding Windows.......................................................................................... 30 
Automatically Running Commands when Windows Open......................... 31 
Adding Entries to the Explorer Right Click Context Menu.......................... 32 

Purpose ................................................................................................. 32 
Configuration ......................................................................................... 32 
Displaying Different Items for Different Files......................................... 33 
Example................................................................................................. 33 

Hot Keys and Mouse Action Commands ...................................................... 35 
Hot Key and Mouse Action Setup .............................................................. 35 
Entering Hot Key/Mouse Action Information .............................................. 36 
Hot Key/Mouse Action Explanations .......................................................... 37 
Window-Specific Hot Keys ......................................................................... 38 

Scheduler ...................................................................................................... 39 
Entering Information for A Scheduled Command....................................... 40 
Scheduler Setup ......................................................................................... 41 



Windows PowerPro Page b Version 3.7 

Running Programs After the System is Idle for a Specified Time .............. 42 
Alarm Log ................................................................................................... 42 

Timers............................................................................................................ 44 
Setting Timers and Associated Commands ............................................... 45 
Setting Timer Value and State ................................................................... 46 
Timer Logs.................................................................................................. 46 

Media Dialog.................................................................................................. 48 
PowerPro Sounds....................................................................................... 48 

Command Entry Controls .............................................................................. 49 
Running Multiple Commands ..................................................................... 49 

PowerPro Built-In Commands....................................................................... 50 
Bars and the *Bar Command ........................................................................ 51 

Screen Edge Positions ............................................................................... 53 
Showing Other Bars when you Click a Main Bar ....................................... 53 
Using Subbars to Display Different Parts of Bars ...................................... 54 
The Section/Subbar Approach to Configuration......................................... 55 
Drag and Drop onto the PowerPro Button Bar........................................... 56 
Using the keyboard to access the button bar............................................. 56 
Adding a Button .......................................................................................... 57 
Changing a Button...................................................................................... 58 
Deleting a Button ........................................................................................ 58 
Moving Bar ................................................................................................. 58 
Positioning the Bar ..................................................................................... 58 
Creating an Autohide Bar ........................................................................... 59 
Creating a New Bar .................................................................................... 59 
Removing a Bar.......................................................................................... 60 
Bar Look ..................................................................................................... 60 
Positioning PowerPro Bars in or beside the Foreground Window ............. 60 

Clipboard Manipulation, Tracking and Copying ............................................ 62 
Clipboard History Tracking ......................................................................... 63 
Clip Filters................................................................................................... 64 

Desktop Command........................................................................................ 65 
Saving and Restoring Desktop Icon Positions ........................................... 65 
Changing Screen Display Resolution......................................................... 66 

Using *Exec ................................................................................................... 67 
Suspending Alarms .................................................................................... 68 
Tiny Type and Run Dialog.......................................................................... 69 
Logging Keystrokes.................................................................................... 70 
Date/Calendar Calculations and Display.................................................... 71 
Prompting for Yes/No Information .............................................................. 72 
Sound Volume ............................................................................................ 72 
CD Functions:............................................................................................. 72 
Writing Entries to a File .............................................................................. 72 

PowerPro *File Commands........................................................................... 74 
Working with a Randomly Selected File..................................................... 75 

Sending Keys to Other Windows .................................................................. 77 
Specifying the Window to Receive the Keys.............................................. 78 
Specifying the Keys to be Sent using *Keys .............................................. 78 
Examples of Keys Commands ................................................................... 80 
Sending Keys to Programs When They Are Started.................................. 81 



Windows PowerPro Page c Version 3.7 

Selecting some Keys to be Sent from a Menu ........................................... 81 
Creating Menus or Bars of Favorite Folders using *Keys .......................... 82 

Formatting Menus and Bars with *Format..................................................... 84 
Changing the Look of an Item with *Format Item....................................... 84 

Sending a Sequence of Mouse Clicks and Moves........................................ 85 
Displaying Menus with *Menu ....................................................................... 87 

*Menu Folder .............................................................................................. 88 
Format of *Menu Folder.............................................................................. 89 
Special Folders for *Menu Folder............................................................... 91 
Entering Format Information for Folder Contents Command..................... 92 
Using *Folder Contents Menu with a Large Folder Tree............................ 94 
Window-Specific Bar and Menu Contents.................................................. 95 
Working with Explorer Windows................................................................. 96 

Displaying a Message with *Message........................................................... 97 
Accessing the Screen Saver with *ScreenSaver .......................................... 97 
Shutdown Windows or PowerPro.................................................................. 97 
Command Scripts.......................................................................................... 98 

Keyword Values........................................................................................ 106 
MessageBox............................................................................................. 112 
InputDialog ............................................................................................... 113 

FormatDate and FormatTime.............................................................. 113 
Help on Expressions ................................................................................... 115 

Sample Script ........................................................................................... 115 
Running a Script from a File..................................................................... 117 

Working with Tray Icons from Other Programs........................................... 120 
Training PowerPro to Recognize Tray Icons from Other Programs ........ 120 

Changing the Wallpaper with *Wallpaper.................................................... 121 
Virtual Desktops .......................................................................................... 121 

Explanation of Virtual Desktop Menu ....................................................... 123 
Virtual Desktop Setup............................................................................... 124 
Initializing Desktops Using the Configuration Dialog ............................... 125 

Wait Command............................................................................................ 126 
Manipulating Windows of Running Programs ............................................. 128 

Specifying the Action for *Window Command.......................................... 129 
Specifying the WindowID for the*Window Command .............................. 131 
Window Handles....................................................................................... 131 

Keyboard Macros ........................................................................................ 133 
Favorite Folders and File/Open Save Dialogs ............................................ 134 
Windows PowerPro Command Line ........................................................... 136 
Information for Stiletto Users....................................................................... 137 
Purchasing PowerPro.................................................................................. 138 
Frequently Asked Questions (with Answers) .............................................. 139 
Power and Flexibility of PowerPro .............................................................. 141 
Demonstrations and Samples ..................................................................... 143 

Demonstration of Menus and Context Menus.......................................... 143 
Demonstration of Subbars and Manually Shown Bars ............................ 143 
Demonstration of *Window Commands ................................................... 144 
Demonstration of Sending Keys with *Keys............................................. 144 
Demonstration of Hot Keys and Mouse Actions....................................... 145 
Demonstration of *Menu Folder ............................................................... 145 



Windows PowerPro Page d Version 3.7 

Demonstration of Keyboard Macros......................................................... 146 
Demonstration of Running Commands when a Window First Opens...... 146 
Virtual Desktop Sample............................................................................ 147 

Notes ........................................................................................................... 148 
Skins............................................................................................................ 150 

Using Skins............................................................................................... 150 
Creating Skins .......................................................................................... 152 

Sharing PowerPro Configurations............................................................... 159 
Contact for Questions or Support................................................................ 160 
Plugins......................................................................................................... 161 

General Information.................................................................................. 161 
How to Program Plugins........................................................................... 162 

Sending Commands to PowerPro....................................................... 164 
Plugin Memory.......................................................................................... 165 
AU PLUGIN  (Version 2002 12 22) .......................................................... 166 
DATE PLUGIN (Version 2002 10 29)....................................................... 167 
EVENT PLUGIN  (Version 2003 01 01) ................................................... 169 
FILE PLUGIN  (Version 2003 01 19)........................................................ 172 
FLOAT PLUGIN  (Version 2002 10 28).................................................... 175 
Sample PLUGIN  (Version 2002 12 22) ................................................... 177 
VEC PLUGIN  (Version 2002 12 28) ........................................................ 178 
WIN PLUGIN  (Version 2002 12 22) ........................................................ 181 
RegEx Plugin (12/26/02 Version) ............................................................. 183 
 



Windows PowerPro Page 1 Version 3.7 

 
 

Overview 
 
Windows PowerPro incorporates these features: 
 Any number of  small-footprint button bars 
  (e.g. fit over title bar of maximized window). 
 Use of any mouse button to launch commands. 
 Drag and drop files to start commands. 
 Up to 95 user-configurable command menus with submenus. 
 Floating button bar, choice of many resolution-independent standard 
  positions, or place in active window caption. 
 Direct access to start menu 
 Hot key, tap key, and mouse action activation of commands. 
 Hot keys which depend on the active program. 
 Activate commands by mouse actions including press and hold,  
  click caption, horizontal/vertical movements. 
 Show menus from hot keys, mouse actions. 
 Menu subsections and button bars which are displayed only if a given program is active. 
 Display menus built dynamically from folder contents. 
 Switch to or close any active task, from a button bar or a menu. 
 Text label, icon, clock, date, timer, or resource display on any button. 
 Built-in commands for screen saver,  windows exit/restart, 
   browsing and running files (with history), moving the button bar, 
   playing sounds, and others. 
 Control of Caps Lock/Shift and Scroll Lock. 
 Scrolling with the middle mouse. 
 Tray minimization. 
 Virtual desktops. 
 Alarms, regular chimes, and scheduled activation/termination of commands. 
 Wallpaper display and switcher/randomizer. 
 Save and restore desktop icon positions. 
 Screen saver switcher/randomizer. 
 Randomization and testing of system and application sounds. 
 Send a sequence of keys to a running program or 
    to a program that you start with PowerPro. 
 Tool tip (balloon) help to display the commands for any button. 
 
Windows PowerPro is intended to supplement the Win95/98/NT 4/5 shell by providing quick, 
minimal-mouse click access to your most used commands while taking up little desktop space, 
and to provide utilities related to Windows start-up and time, with one consistent interface. 



Windows PowerPro Page 2 Version 3.7 

 
PowerPro License and Warranty 

 
The Windows PowerPro program, DLL, Help File,  Word Document File, and readme file are all 
Copyright 1998 by Bruce Switzer.  All Rights Reserved. 
 
The PowerPro scripting tutorial in PPST 1.00.chm was developed by Alexander Cicovic and the 
PPTF. 
 
 
The PowerPro icon was created by Jonas Hjortland. 
 
THIS SOFTWARE IS DISTRIBUTED "AS IS," WITHOUT WARRANTY AS TO PERFORMANCE 
OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EXPRESSED OR 
IMPLIED.  BECAUSE OF THE VARIOUS HARDWARE AND SOFTWARE ENVIRONMENTS 
INTO WHICH THIS PROGRAM MAY BE PUT, NO WARRANTY OF FITNESS FOR A 
PARTICULAR PURPOSE IS OFFERED.  GOOD DATA PROCESSING PROCEDURE 
DICTATES THAT ANY PROGRAM BE THOROUGHLY TESTED WITH NON-CRITICAL DATA 
BEFORE RELYING ON IT.  THE USER MUST ASSUME THE ENTIRE RISK OF USING THE 
PROGRAM. 
 
The 32 bit version of Windows PowerPro is free. 
 
Windows PowerPro may not be sold nor be used in any profit-oriented endeavor without the 
express written permission of the author with the exception that Windows PowerPro may be 
distributed freely via media intended to make shareware available to the public for trial.  All files, 
including the Windows PowerPro program, DLL, help file, readme file, license file, and all others 
in the Windows PowerPro zip file, must be included. 
 
All trademarks used in this Help File are the property of their respective owners and are used 
for explanatory purposes only. 
 
The jpeg conversion routines in this software are based in part on the work of the Independent 
JPEG Group. 



Windows PowerPro Page 3 Version 3.7 

Configuring PowerPro 
 
Purpose 
 
You configure Windows PowerPro buttons, menu contents, media, hot keys, and alarms with 
the Configure Windows PowerPro set of tabbed dialogs. 
 
You start this dialog by right-clicking anywhere on the Windows PowerPro bar with the Ctrl key 
pressed, by pressing and holding down any button on a bar, by running the Windows PowerPro 
configure program pproconf.exe from the Accessories section of your Start menu, or by 
associating the *Configure built-in command with a button, menu item, or hot key. 
 
Configuration 
 
The command displays a set of tabbed dialogs as follows.  These tabs also correspond to the 
actions you can select with the *Configure command to control which tab is initially displayed. 
 
Setup sets functions which customize your Windows interface and allow you to enter the code 
you obtained when you purchase Windows PowerPro. 
 
GUI Control sets functions which customize your Windows interface. 
 
Command Lists allows you to change the contents of command lists. 
 
Key/Mouse allows you to assign commands to hot keys, mouse actions, or screen corners. 
 
Scheduler allows you to add or change alarms. 
 
Timers controls the value and commands of timers. 
 
Media controls the sounds, wallpaper, and screen saver allows you to specify how Windows 
PowerPro should automatically change them. 
 
The *Configure command lets you use the action AddNewReminder to add a new scheduled 
message. 
 
Windows PowerPro can position the tabbed configuration dialog as always-on-top; you can 
change this with advanced dialog. 
 
 
 
 



Windows PowerPro Page 4 Version 3.7 

Setup Dialog 
 
Purpose 
 
The Setup dialog allows you to move the cursor to the default button of new dialogs and 
optionally press the button; to automatically tray minimize applications when they are minimized, 
to automatically hide new windows when they are opened, to track explorer windows as you 
open them, and to force explorer windows to a given view.  You can also access the 
Registration, virtual desktop setup , advanced setup dialogs, and import/export dialogs.  If 
PowerPro is running, you can save and restore desktop icon positions with the corresponding 
buttons.  You can also show all hidden bars with "Show All Bars". 
 
Configuration 
 
This dialog is activated by clicking on the "Setup" tab of the configuration dialog.  
 
Cursor to Default Button 
You can have Windows PowerPro automatically move the mouse cursor to the default buttons 
of a dialog. 
 
 
Automatic Tray Min  
Enter a caption list windows to be minimized to the tray instead of the task bar. 
 
Automatic Hide 
Enter a caption list windows to be minimized to the hidden when created. 
 
Automatic Tray Min  
Enter a caption list windows to be minimized to the tray instead of the task bar.  Check "traymin 
if program starts minimized" to have PowerPro tray min windows which match the caption list 
and which start minimized or which are minimized when PowerPro starts. 
 
Explorer Windows 
You can specify that  Windows PowerPro track Explorer Windows for use with the *Menu 
Explorer command.  
 
You can specify that Windows PowerPro should force settings for Explorer view and 
arrangement. 
 

Automatically Moving the Mouse Cursor to a Dialog Button 
 
Check the "Cursor to default button" checkbox on the Setup dialog to have Windows PowerPro 
automatically move the mouse cursor to default button on a dialog. 
 
You can omit certain dialogs by including their captions in a caption list in the edit box beside 
the checkbox. You need not enter the whole caption:  enter xxx* for captions starting with xxx , 
enter *yyy for captions ending in yyy and enter *zzz* for captions containing zzz anywhere. 
 



Windows PowerPro Page 5 Version 3.7 

You can have Windows PowerPro automatically push the default button by including the caption 
of the window in the "Press default button" edit box at the bottom of the dialog. You need not 
enter the whole caption:  enter xxx* for captions starting with xxx, *yyy for captions ending in 
yyy, and *zzz* for captions containing zzz anywhere.  Windows PowerPro will wait for 1 second 
before pressing the button by default; you can change this wait time with the internal 
PressDelay option. 
 
If you gray check the checkbox, Windows PowerPro only moves mouse cursor and presses the 
default button for captions specified in the "Press default button" edit box 
 
Find/Replace text 
Shows a dialog allowing you to search for text throughout the configuration file and replace it by 
other text.  For example, if the folder path to many of your commands changes because you 
moved some files, you can use this dialog to search and replace the path throughout 
commands.  For more complex editing of your configuration, use import/export buttons to send 
configuration to a text file, then edit this text file, then re-import the text. 
 
Restore Backup/Restore Previous 
Unless you indicate otherwise on the advanced setup dialog, PowerPro keeps five generations 
of backup for your configuration file.  A copy of the current configuration is kept in "!auto backup 
of …", and a copy of the five previous configurations are kept is "!Previous auto backup of …".  
You can restore these backups using buttons on the Setup dialog.  This button can also be 
used to restore the results of the most recent use of the Apply button. 
 
 

Minimizing a Window to the Tray 
 
If you run many programs at once, you can reduce task bar clutter by minimizing a window to 
the tray.  When you minimize to the tray, Windows PowerPro creates a tray icon for the program 
and minimizes and hides the window.  Clicking on the tray icon restores and activates the 
program.  Right clicking on the icon shows a menu allowing the program to be restored, 
maximized, or closed. 
 
There are three ways to minimize to the tray:  use a *Window traymin command attached to a 
hot key, bar button, or menu item; set the program to start initially as tray minned on the 
command entry controls; or place the caption or exe file name in the "Automatically minimize to 
tray" edit box on the Setup configuration dialog. 
 
You can replace normal minimization to the task bar by minimization to the tray by using the edit 
box on the Setup configuration dialog.  Separate entries by commas.  If the entry in the edit box 
ends with a *, then windows with captions starting with the characters before the * will be 
minimized to the tray; if the entry starts with a *, then windows ending with the characters 
following the * will be minimized to the tray.  Finally, you can also select windows to be 
minimized by using =filename to work with the program filename.exe (omit path and .exe). 
 
A convenient way to manually access tray minimizing is to assign the *Window traymin 
command to a  hot key corresponding to right-clicking the minimize box. 
 
Normally, Windows PowerPro uses the icon of the minimized program as the tray icon.  But you 
can change this behavior and select any icon by creating a special command list. Set up a 
command list  item in this special command list for each new icon you want to use.  Set the 
command list item name to match the caption of the window to be tray minimized, and set the 



Windows PowerPro Page 6 Version 3.7 

command list item icon to the desired icon.  The command list item commands can be left at 
(none).  Use *xxx as a command list item name to match windows with captions ending in xxx, 
yyy* to match those starting in yyy, and =ExeName to match all programs called ExeName.  
Finally, use the drop down box on the command list setup dialog to select the command list. 
 
If you are using virtual desktops, showing a tray icon will also switch to the virtual desktop it was 
part of when it was tray-minimized. 
 

Changing Explorer List and View Settings 
 
You can affect the view (large icon, small icon, detail, list) and arrange (date, name, type, size) 
settings for Explorer in two ways:  you can force the settings for all cases using drop down 
boxes on the Setup configuration dialog, and you can change the settings for specific cases by 
sending keystrokes to Explorer windows. 
 
To force the same settings for all newly-opened Explorer windows, use the drop-down boxes on 
the Setup configuration dialog   Set the first drop down to No, Single, Double, or All to select 
which types of Explorer Windows to force, then select the desired view and arrangement 
options.  These forced settings will normally override all folders, including the last 50 opened 
where Explorer also stores a setting,  but if you hold down the shift key while opening the new 
window, Windows PowerPro will not override the Explorer settings.  
 
For a convenient way to change the settings for Explorer windows while you are working with 
them, send keys to the active window (of course, you can use the tool bar as well).  For 
example,  
Command *Keys 
Parameter "a-v i d" 
sends Alt-V, then i, then d to the active window which would set date sort arrangement for 
Explorer.  You could attach the above command to a hot key or a menu attached to a hot key. 
 
You can also use start Explorer at a specific folder and with specific settings as follows: 
Command: c:\windows\explorer.exe 
Parameters /select,D:\Program Files\eudora 3\Attach\*.* 
More Commands: *Keys {to **attach}  "a-v g" 
 
This command launches Explorer and uses the Explorer command parameters to select folder 
D:\Program Files\eudora 3\Attach.  It then sends key strokes Alt-v g to select large icon 
settings.  The +**attach tells Windows PowerPro to wait until a window with caption ending in 
attach appears before sending the keys. 
 
You could create a menu of commands like the above for favorite folders. 
 
If you send keys to Explorer when it is launched from Windows PowerPro, the settings will 
replace any settings forced by the Setup dialog. 

 

Advanced configuration options 
 
configuration dialog which lets you set many less-used Windows PowerPro options.  There are 
four tabs:  configuration lets you change options controlling the configuration dialog, Other 



Windows PowerPro Page 7 Version 3.7 

controls miscellaneous features, characters let you define or change special characters used in 
commands, and limits set timer and count limits. 
 
Configuration 
 
Include desk icons If checked, desktop icons will be included on the Start Menu shown by 

pressing the Capture button on command configuration controls. 
No Auto backup Check to prevent PowerPro tasking automatic backups of configuratino 

files. 
Run reconfigure If checked, any command list called Reconfigure will be run after the 

configuration dialog is closed with OK.  The could be used to restart 
*waits or to reset *Format Items. 

Config on top Check to display configuration dialog as topmost 
Remember column 
widths 

Check to have PowerPro store column widths set in configuration 
dialog lists. 

Icons on 
configuration  

Check to display item icons on command lists in the configuration 
dialog.  (This will slow display of these lists.).   Gray check to display 
icons only for command lists marked "Show as Bar".  

Location of 
command list click 

Use to control which tab is displayed initially when you double click 
command list item.  Check to display tab of clicked item (left or middle 
or right).  Gray check to only display left/middle/right for auto show as 
bar command list.  Uncheck to always display left. 

 
 
Other 
 
Show all windows If checked, all windows for a task are shown whenever any window for 

that task is activated. 
Show tray min Shows windows which PowerPro has tray minimized if they are 

activated, eg by launching a document which the window program is 
associated with. 

Play .wav files Check to have PowerPro play .wav files used as commands; uncheck 
to use standard associated program for .wav (eg Media Player). 

Stop Alt-F4 Prevent alt-F4 from closing bars. 
Use timer for active Check to have active bars refreshed every 2 seconds.  Gray check for 

refresh every 1 second.  Only needed if active bars are non-responsive 
due to interference of another program. 

Fast Send Key Uses a faster engine to send keys but does not work for some very rare 
ctrl-key combinations (eg ctrl-tab) 

Allow only alphas Allows only alphanumerics in file names formed from captured 
clipboard items 

User internal folder Check to use folder icon in PowerPro.exe file; uncheck uses system 
folder icon (which may fail in NT). 

Restore desktop PowerPro restores saved desktop icon positions when the screen 
resolution is changed; however, this option may cause Explorer aborts 
on some systems. 

No restart If checked, PowerPro will never prompt for a restart after execution of 
*Exec Resolution. 

Parameter dialog 
position 

Select starting position for dialogs displayed by input and inputdialog 
operators 

 



Windows PowerPro Page 8 Version 3.7 

 
Characters 
 
Start and end char Specify characters to replace {} for specifying special keys when 

sending keystrokes. 
Expression 
character 

Use this character to insert expressions or variables with &(expression) 

Quote must precede Affects how the quote is used with expression char and prompt char.  If 
checked, then the quote must precede either for the script insertion or 
prompting to occur.  If unchecked, then a preceding quote stops the 
script insertion and prompting. 

Process expression Check to have expression character recognized and processed in 
assign, if, and for.  This is advanced usage; normally, you do not use 
the expression character in these statements.  If unchecked, then any 
usage of the character is replaced by blank. 

Reverse results Use at the start of hot key targets in window caption matching strings to 
select windows which do not match the following strings. 

File name character Used with open/save file tracking, this is the underlined character in the 
title beside the file name edit box. 

Command separator Obsolete.  Use this character to separate multiple commands; leave 
blank for preferred {enter} (start each command on new line). 

Clipboard character Obsolete.  Leave blank and instead use &(clip) instead, where & is 
expression character, to insert the first line of the clipboard. 

Prompt character Obsolete.  Leave blank and instead use &(input "title") or &(filemenu 
"c:\path\file.txt") instead   to prompt for input, where & is expression 
character. 

Allow single 
character variable 
names … 

Meant for compatibility with scripts created for older versions of 
PowerPro.  You should leave this unchecked, which means than the 
expression insertion character must always be followed by ( to be 
processed. 

 
Limits 
 
Max menu row Sets maximum number of rows in *Menu Folder and *Menu Explorer 
Explorer Windows Sets maximum number of entries in *Menu Explorer; you may need to 

restart PowerPro if you change this value.  
Button held down Button configuration dialog shown after button held down for this 

number of milliseconds; set to a large number to disable. 
Scroll interval Sets time in milliseconds between scroll steps when automatic mouse 

scroll is activated. 
*Menu Folder 
interval 

Sets time in milliseconds before tool tip appears for *Menu Folder and 
*Clip menu.  Set 0 to disable tool tip. 

Marker Window Sets the number of pixels used in the marker  for hidden bars. 
Time mouse hovers  hover time in milliseconds for cases when bars are set to activate left 

click after mouse hovers over button. 
Send keys delay Set delay in milliseconds for first key and subsequent keys 
Hook disable Set non-zero to disable internal hooks.  Only needed in rare 

configurations. 
 

Exporting and Importing Configurations Using Text Files  
 



Windows PowerPro Page 9 Version 3.7 

You can use the Import from Text and Export to Text buttons on the Setup dialog to write parts 
of the configuration file to a text file or to read text back into a configuration file.  You might find 
this useful to make mass changes to a configuration. The configuration information that can be 
read or written is limited to command lists, scheduled events, timers, and hot keys. 
 
Exporting to a text file produces a file with this format: 
 
A line [*Hot] signals the start of the hot keys.  Each hot key is then written on one line as follows: 
hotkey "target" switches command!`work 
where 
hotkey is an integer giving the hot or mouse action 
target is the target, always in double quotes 
switches is an integer encoding the how to start, switch to, and on top settings 
command is the command text; if the exe name contains blanks, it is followed by a þ 
!` is a separator between the command and work strings 
work is the starting folder or formatting keywords for certain built-in commands 
 
Each command list in the text file is started by a line [name], where name is the command list 
name.  There are five lines for each command list entry: 
"name" icon*tooltip 
L switches command!`work 
M switches command!`work 
R switches command!`work 
F flag width textcolor backgroundcolor 
 
where 
"name" is the item name, always in quotes 
icon gives the number and file for the icon 
* separates the icon from the tool tip 
tooltip is the tool tip text 
L starts the left command; see hot key for command format 
M starts the middle command; see hot key for command format 
R starts the right command; see hot key for command format 
F gives the own text and own background flags, the width, and the text and background colors 
as RGB integers. 
 
When you import files, you only need to include the command lists you want to import.  If a 
command list of the same name already exists, it is overwritten.  The [*hot] section is also 
optional.  If present, it overwrites existing hot keys.  Scheduling is cumulative, however; 
imported events are added to existing events (but duplicates are ignored). 
 
 
The import file must follow the above format.  However, for command lists, you only need to 
include the L, M, R, F values where the command is not (none) or the F values are not all zero. 
 
Command Line Operations 
 



Windows PowerPro Page 10 Version 3.7 

If you want to read text into an existing or empty configuration file, start the pproconf.exe 
program as follows: 
 
c:\yourpath\pproconf.exe c:\anypath\newconfig.pcf 
 
If newconfig.pcf exists, it is read and then can be modified by importing text.  If it does not exist, 
Windows PowerPro will create an empty configuration (after prompting to confirm). 
 
You can import or export using only the command line.   
c:\yourpath\pproconf.exe /i:"c:\path\import.txt" 
imports into the standard configuration.  Note the colon (:) and double quotes which follow the /i.  
Both must be included and without spaces.  You must put the full path to the import text file 
within the double quotes.  Also, the configuration program pproconf.exe cannot already be 
open. 
 
To export the whole configuration, use 
c:\yourpath\pproconf.exe /x:"c:\path\exportall.txt" 
 
To export just scheduled events, use 
c:\yourpath\pproconf.exe /s:"c:\path\exportsched.txt" 
 
To export just command lists using the Left command only format, use 
c:\yourpath\pproconf.exe /L:"c:\path\exportleft.txt" 
The character following the / is the letter L. 
 
You can precede the / by a .pcf path if you are not using the standard pproconf.pcf in order to 
import or export from another .pcf file.   
 
 
 
 

Automatically Hiding Windows 
 
You can specify that Windows PowerPro should automatically hide any windows, should they 
become visible. 
 
Put the comma-separated captions of the windows you want to autohide in the Auto Hide edit 
box on Setup dialog.  For example,  
 *HideMe* 
in this edit box will cause any windows with a caption containingHideMe to be hidden. 



Windows PowerPro Page 11 Version 3.7 

GUI Control Configuration Options 
 
Purpose 
This dialog configures many options related to the way you interact with Windows. 
 
Configuration 
The GUI Control dialog is selected by clicking on the "GUI Control" tab from the Configuring  
command. 
 
There are check boxes for controlling Caps Lock, Num Lock, and Scroll Lock keys. 
 
You can indicate that windows should be centered when switched-to from the active window list 
or the active task buttons. 
 
You can indicate that Windows PowerPro should show more of windows which it activates and 
which are mainly off the screen. 
 
You can specify that Windows PowerPro should disable the screen saver while a RAS 
connection is active.   
 
You can specify that if a scheduled *ScreenSaver or media tab command changes the saver 
while it is running, then the running saver should be changed to the new one. 
 
You can indicate that Windows PowerPro should show window size and position whenever any 
window is moved or sized. 
 
You can have PowerPro force newly created windows to be completely on screen. 
 
You can specify that Windows PowerPro should enlarge the file list windows use in file open 
and save dialogs (only works for programs that use standard Windows dialogs). 
 
You can set the maximum width of taskbar buttons; for examople, setting this to 22 produces a 
button consisting solely of the icon. 
 
You can use the middle mouse button and mouse movement to scroll windows. 
 
You can indicate that Windows PowerPro should pan (move) windows into view when the 
mouse is held over them at the screen edge;  you can set the speed of panning by setting the 
step size in pixels. 
 
You can ask Windows PowerPro to press buttons, select combo box items, etc., if the mouse is 
stopped over the button for a specified time. 
 
You can indicate that Windows PowerPro should activate windows when the mouse passes 
over them and set a delay in milliseconds for how long the mouse has to be over the window for 
it to be activated.  You can further specify that the active window should only be changed if the 
mouse is over a caption. 
 
You can specify that Windows PowerPro automatically track text pasted to clipboards. 



Windows PowerPro Page 12 Version 3.7 

 
You can specify the sort order for the task bar.  Check "Sort taskbar" to sort entries 
alphabetically.  For further control, you can specify the exact order of windows by listing their 
captions.  Use xxx* to match any captions starting with xxx, *xxx to match any caption ending in 
xxx, and *xxx* to match any caption containing xxx.  Separate entries in the edit box with 
commas.  Put a dash (-) in front of an entry to force it to the right end of task bar.  For example, 
if you put *notepad, *agent*, -*explor* in the edit box, then all windows with captions ending in 
Notepad would be placed first on the task bar, followed by all windows with agent anywhere in 
their caption, followed by all other windows in alphabetical order, followed by all windows with 
explor in the caption. 
 

Caps Lock, Num Lock,  and Scroll Lock 
 
The GUI Control dialog contains check boxes to permit you to control the behavior of the Num 
Lock, Scroll Lock, and Caps Lock keys. 
 
You can specify that pressing shift always clears caps lock, to avoid reversed mixed case like 
Windows PowerPro.  Or you can disable the caps lock key completely. 
 
By setting the "Shift Clears Cap Lock" check box to the gray-checked state, you specify that 
shift should clear caps lock only when a letter is pressed with shift. 
 
You can also completely disable the caps lock key. 
 
You can disable the Scroll Lock key.  This key is rarely used, and when activated unknowingly, 
causes irritating behavior from the arrow and other keys. 
 
You can disable the Num Lock key.  Check the setting the set the key permanently off; gray 
check to set the key permanently on. 
 

Scrolling with Mouse Movements 
 
Purpose 
You can scroll windows vertical or horizontally using mouse movements.  This avoids having to 
move the mouse to the scroll bar to scroll the window.  You can scroll either automatically or 
manually.  Automatic scrolling scrolls the window even when the mouse is not moving; manual 
scrolling requires mouse movement to scroll the window. 
 
 

Manual Scrolling with Mouse 
 
You can start manual scrolling in one of two ways:  by attaching a command to a hot key/mouse 
action or by the middle mouse button.   
 
To start scrolling with a hot key, attach this command to the key: 
Command *Exec 
Parameter scroll 
Scrolling only occurs for the window which the mouse is over when the hot key is activated.  
Scrolling continues until the left mouse button is clicked. 



Windows PowerPro Page 13 Version 3.7 

 
To set up middle mouse scrolling, use the GUI Control configuration dialog.  Check  the Scroll 
checkbox there to scroll only while middle mouse down; gray-check to scroll with middle mouse 
up until left button clicked. 
 
To scroll a window, activate the *Exec scroll hot key or hold down middle mouse and move in 
desired direction.  For ordinary check, scrolling will continue even if the mouse stops.  For gray 
check or the scroll command, scrolling will pause unless the mouse is near the top or bottom of 
the window.  You can control or disable speed of automatic scrolling with Scroll interval 
advanced option. 
 
To scroll pages (instead of single lines), click the right mouse button while the window is 
scrolling.  
 
To quickly move to the start or end of the file, hold the Alt key down and move the mouse in the 
desired direction. 
 
Mouse scrolling only works with applications that use standard windows scroll bars. 
 
Some applications, such as Microsoft Internet Explorer, already support mouse scrolling.  You 
can disable Windows PowerPro scrolling for these or any window by typing the caption of the 
window in the edit box beside the middle scrolling check box.  Separate captions of different 
programs by commas.  Normally, you will not type the whole caption, but rather only a part.  Use 
*xxx to match all captions ending in xxx.  Use xxx* to match all captions starting with xxx.  Use 
*zzz* for captions containing zzz anywhere.   For example, *Internet Explorer will match MS IE 
windows. 
 
 

Automatic Scrolling with the Mouse 
 
To scroll windows automatically, execute this command from a hot key or mouse action: 
Command *Exec 
Parameter autoscroll 
A small gray rectangle with the letter "s" will appear in the current window.  Move the mouse 
above it to scroll up; the further the mouse is from the gray rectangle, the faster the window is 
scrolled. Move the mouse below the rectangle to scroll down; the further the mouse is from the 
gray rectangle, the faster the window is scrolled.  The slowest scrolling speed is set by the scroll 
interval on the advanced dialog.   
 
Right click to scroll a page.  Middle click to scroll 5 lines.  Left click to stop scrolling. 
 
You can optionally set the scroll speed by including the number of milliseconds between auto 
scroll steps with the *Exec autoscroll command.  Use 0 to disable automatic scrolling; in this 
case scrolling is accomplished solely with middle click (5 lines) and right click (page). 
 
Many newer programs support autoscrolling internally if you middle click on one of their 
windows.  To automatically take advantage of them, define a hot key (say tap shift) which sends 
a middle mouse click to the programs which support autoscroll and executes the Windows 
PowerPro command otherwise.  To do this, define the hot key twice, and use the target window 
feature on the second definition.  For example, to use native autoscroll in Internet Explorer: 
 



Windows PowerPro Page 14 Version 3.7 

Hot Key: tap shift 
Command *Mouse 
Parameter middle 
Target  *Internet Explorer 
 
 
Hot Key: tap shift 
Command *Exec 
Action  autoscroll 
Target  
 

Automatically Pressing Buttons when Mouse is Stopped over Them 
 
You can ask Windows PowerPro to automatically press buttons when the mouse is stopped 
over them for a specified time. 
 
Use the check box on the GUI Control tab to do this.  You can also set the stop time with the 
spin box.  If you want Windows PowerPro to automatically select standard menu items too, gray 
check the box. 
 
By default, Windows PowerPro will automatically press buttons (including radio buttons and 
check boxes), combo boxes, combo box list items, standard toolbars, and tabs in standard 
tabbed dialogs.  Windows PowerPro also will automatically press the minimize, maximize, close, 
help, and system menu buttons in captions and will automatically open standard menus in menu 
bars. 
 
You can use the "except" edit box to specify a caption list of windows where the automatic press 
is not to occur. 
 
You can add  or remove window types to this list as follows:  Assign the command 
*Exec 
autopress 
to any hot key.  (Avoid using Alt as a modifier key for the hot key as this will close open menus.)   
 
Move the mouse over the window of interest and activate the hot key.  If the window type is not 
currently one that is automatically pressed, Windows PowerPro will add it to its list.  If it is one 
that is automatically pressed, Windows PowerPro will remove it.  In both cases Windows 
PowerPro notifies you of the results with a message box. 
 
If you use "Cursor to default button" from Window Control tab, Windows PowerPro will not press 
the button moved-to by this features unless you move the mouse from where Windows 
PowerPro positions it. 
 

See Mouse Cursor Position and Window Information 
 
You can have Windows PowerPro display a small window with the mouse screen position and 
the size and position of the window under the mouse.  This display can be activated manually or 
it can be automatically shown whenever you move or size a window. 
 



Windows PowerPro Page 15 Version 3.7 

To manually show the information window, execute this command: 
Command: *Exec 
Action: WindowInfo 
The window will be displayed until you execute the command again (ie to stop display, execute 
the command again). 
 
To show the information automatically whenever a window is moved or sized, use the check 
box on the GUI Control dialog. 
 
The information window has six lines of text: 
 mouse screen coordinates, both Absolute (point 0,0 is top-left of screen) and Relative 
(point 0,0 is top-left of window under mouse) 
 window coordinates: (left,top) - (right, bottom) of window under mouse 
 total window size: width x height 
 client window size and aspect ratio 
 window caption 
 window class 
The client window excludes the border, caption, menu bar, tool bars, and status bar.  The 
aspect ratio is the width of the client window divided by its height. 
 
The display window uses the same colors and font as the tool tip window. 
 
If the mouse cursor is over an Edit box, the contents of that box are shown are the caption.  This 
can be useful to see password fields. 
 
For the automatic display, to have the information in the display updated dynamically as you 
move or size a window, you must have the Windows option "Show Window Contents While 
Dragging" activated; this option is available in NT4 and Win 98 or in Win95 with MS Plus!. 
 

Command Lists Dialog 
 
Purpose 
 
The command list dialog is used to create the list of commands for: 
 display as a menu 
 display as a bar 
 displaying tray icons 
 running as a script 
 creating keyboard macros 
 creating commands to run when windows first open  
 
There are two steps involved with using these features:  use the Command Lists dialog to 
create the list of commands and then use a command like *Menu show or *Bar show to display 
the command list as a menu or a bar. 
 
Configuration 
 



Windows PowerPro Page 16 Version 3.7 

Select the command list you want to work with from the drop down at the top of the dialog, or, to 
create a new one press New list.  Press Properties to control how the command list will be 
displayed as a menu or bar. 
 
Select an item and use the controls at the right of the dialog to add or change it.  You can also 
right click on an item to access a popup menu of configuration options, or you can double click 
on the item to change it.  When you edit an item, Windows PowerPro takes note of which 
command (left, right, middle) you clicked on, and starts the command edit dialog with this 
command. 
 
There are several ways to add new items: 

By using Add Before and Add After to add an item and configure all commands and features.  
 
By dragging them from Explorer or a desktop icon or the start menu itself (Win98 only):  Use 
"Programs" to open an explorer window or use any other explorer window and drag/drop to 
set the left command, icon, and label from the dropped item.  The item is added after the 
current selection. 
 
By using Quick Add to add a new item after a selected item and set the left command to a file 
or a Start Menu entry.  Only the left command and a subset of command features can be set 
with Quick Add. 

 
Press Apply to immediately test changes using Windows PowerPro.  If you cancel the 
configuration dialog, applied changes will be removed. 
 
If you want Windows PowerPro to automatically display the command list as a bar, check the 
"Show as Bar" box at the right of the dialog.  You can also use the *Bar command to control 
display of bars. 
 

Configuring a Command List Item 
 
Name:  To set the item label, type a label of up to 127 characters into the label combo box or 
select a special label using the info… button.  Leave the label edit control blank to omit a label 
(eg if you just want to show an icon).  For command lists displayed as menus, you can 
optionally precede any letter in the menu item name by an & to use that letter as a menu 
mnemonic to select that item from the keyboard. 
 
Tool tip:  Enter tool tip text.  You can create multi-line tool tips with the separating character 
specified on the tooltip setup (default is slash (/)).  You can display dynamic information on tool 
tips using *Info.  The multi-line character still applies within the information displayed by *Info. 
 
Background and text color:  Check the box and use the Set button. 
 
Hide:  check to hide this item when bar or menu displayed (does not apply to *Format 
commands). 
 
Hide icon:  Check to hide icon.  Can be set programmatically with *Format item. 
 
Disable/No 3D:  If command list is shown as a menu, disables this item.  If shown as a bar, 
eliminates 3d effect when mouse cursor over button. 
 



Windows PowerPro Page 17 Version 3.7 

Hover clicks:  If "Hover Clicks" is checked on command list properties, this drop down is used to 
select which bar button command is activated by hovering; you can also select none to disable 
hover this for button. 
 
Width:  Leave 0 for default width, which is just wide enough to accommodate the text and icon.  
Set to a positive number to specify a fixed width in pixels.  Set to a negative number to specify 
that the width should be the default width plus the specified width (negative sign removed).  
Width is only used for buttons, not menu items. 

 
Height:  Leave 0 for default height or for height set on command list properties; else set button 
height in pixels. 
 
Icon: Choose the source for the icon from the drop down if you want the icon to be based on the 
Left, Middle, or Right Command.  Or browse for an icon file with the … button.  Use the spin box 
to choose a specific icon from a file.   
 
Commands:  Items can have three associated commands:  use the left/middle/right buttons to 
access each set of command entry controls for each item.  Use the find button or the command 
dropdown list to set a program or enter a builtin command. 
 

Special Labels for Buttons 
 
Purpose 
 
You can display dynamic text to monitor time, date, resources on your system, or other 
information.  This text can be displayed on button labels, as menu item labels, on tool tips for 
bars, menus or tray icons, or in the system tray replacing the clock. 
 
Configuration 
 
Set the start of the item label or tool tip to *Info and then use the Info button in the top left of the 
item configuration dialog to select a dynamic resource keyword to add to the end of the *Info 
display.  Keywords are replaced by the corresponding system value.  There are three types of 
keywords: 
 
 time/date 
 resources 
 other , such as clipboard contents, virtual desktop name, variable contents, free disk 
space, timer value 

 
You can also put arbitrary text on a *Info display by putting it in quotes (e.g "any text").  Only 
alphanumerics need be put in quotes; special characters like % or / do not need to be put in 
quotes. 
 
The case of keywords is important.  Most keywords are in lower case, except for a few time/date 
keywords (eg MMMM, HH). 
 
For bar labels and the system clock, use the width field on the command list item to make sure 
there is enough room to display the text as it is updated.  Use a positive large width or a negative 
width (which sets the buttons width to the initial *Info size plus the absolute value of the width). 
 



Windows PowerPro Page 18 Version 3.7 

 
Tray icon text is normally forced to one line.  But you can have multiple lines by setting positive 
values for both the height and width of the item associated with the *info field which replaces the 
clock.  In this case PowerPro will word wrap the text in a rectangle of the specified size. 
 

*Info displays on bar labels are updated once per second. 
 
Examples 
 
*Info gdi/user dunrate 
shows gdi and user resources separated by slash then current download rate on DUN 
connection. 
 
*Info yyyy MMM dd HH:mm:ss swap ppmem% 
shows year, short month name, day number (with leading zero), minutes, seconds, swap file size, 
percentage of free memory.  Could look like 1999 Sep 04 13:18:22 60 15%.  Note special 
characters : and %. 
 
*Info "c:" disk c "d:" disk d  
Shows free space on disks c and d. 
 

 

Date and Time Format  
 
Use the *Info labels of the command item dialog to specify date or time display. Use these 
sequences of letters.  The case of the letters is important: 
 
offset n Add n minutes to current time before processing following date/time items; the 
number n can be positive or negative. 
shortdate  Short date format (as set on Control Panel|regional) 
longdate  Long date format (as set on Control Panel|regional) 
d   Day of month as digits with no leading zero for single-digit days.  
dd   Day of month as digits with leading zero for single-digit days.  
ddd   Day of week as a three-letter abbreviation.  
dddd   Day of week as its full name.  
M  Month as digits with no leading zero for single-digit months.  
MM   Month as digits with leading zero for single-digit months.  
MMM   Month as a three-letter abbreviation.  
MMMM Month as its full name.  
yy   Year as last two digits, but with leading zero for years less than 10.  
yyyy   Year represented by full four digits.  
w  week number with no leading zero. 
ww  week number with leading zero if less than 10. 
daynum  day number of year 
 
h   Hours with no leading zero for single-digit hours; 12-hour clock  
time  Time format (as set on Control Panel|regional) 



Windows PowerPro Page 19 Version 3.7 

hh   Hours with leading zero for single-digit hours; 12-hour clock  
H   Hours with no leading zero for single-digit hours; 24-hour clock  
HH   Hours with leading zero for single-digit hours; 24-hour clock  
m   Minutes with no leading zero for single-digit minutes  
mm   Minutes with leading zero for single-digit minutes  
s   Seconds with no leading zero for single-digit seconds  
ss   Seconds with leading zero for single-digit seconds  
t   One character time marker string, such as A or P  
tt   Multicharacter time marker string, such as AM or PM  
 
Put characters in double quotes to avoid being scanned for date/time codes. 
 
Example 
*Info "London" offset +360 ddd yy/MMM/dd h:mm:ss t 
could show 
London Sun 98/Sep/19 7:53:01 P 
 
 

Resource Usage Displays 
 
 
Windows PowerPro can display Windows resources on bar button or menu item labels or tool 
tips by using the *Info entry from the name field of the Command List Item dialog.   
 
Use any combination of the following keywords in any order to display the resources.  Keywords 
must be in lower case.  Keywords must be in lower case. 
 
gdi (95/98) Displays the percentage of free GDI resources  
user (95/98) Displays the percentage of free USER resources. 
pkmem Displays free physical memory in Kilobytes. 
pmem  Displays free physical memory in Megabytes. 
ppmem  Displays percent free physical memory in Megabytes. 
vkmem  Displays free page file plus physical  memory in Kilobytes. 
vmem  Displays free page file plus physical  memory in Megabytes. 
cpu Percent CPU in use (approximate). 
swap (95/98) Swap file size in megabytes. 
swapinuse (95/98) Swap file size in use in megabytes. 
pswapinuse 
(95/98) 

Percentage of swap file in use. 

dunin (95/98) Kilobytes received since DUN modem connected. 
dunout (95/98) Kilobytes sent since DUN modem connected. 
dunrate (95/98) Running average of kilobytes received per second. 
battery 
(95/98/2000) 

Percent of battery power remaining; 255% means no 
information available  

allbattery 
(95/98/2000) 

The display consists of these three fields: 
percent of battery power remaining (255% means no 
information available) 



Windows PowerPro Page 20 Version 3.7 

character + if battery charging, - if discharging, ? if unknown 
charging status 
AC if ac connected, DC if battery power being used; ?? if 
unknown. 

 
Any other text in the *Info item label is displayed without change.  For example: 
*Info gdi/user  Virtual: vmem 
displays the GDI and User resources separated by a slash, then the word "Virtual", then the free 
virtual memory in megabytes. 
 
Resources displays are updated once per second. 
 
If  you are running win95 and the dun modem displays are not working, try upgrading to at least 
DUN  driver 1.3 driver from Microsoft www.microsoft.com (Dun 1.3 comes with Win98). 
 
 
Examples 
 
*Info user/gdi pkmemK 
shows user and gid resources separated by a slask, them physcial memory followed by "k"; 
sample output would be 78/80 123K 

 

Other Displays 

 
 
Other *Info button labels (all keywords must be in lower case) 
 
clip n  Shows text on clipboard; use n to limit to first n characters. 
var v  Show variable v (only variables a-z can be used, not x0-x9) 
deskname  Current desktop name. 
desknum  Current desktop number 1-9. 
disk x  Free space for disk x. 
timer x  Value of timer x in hours and minutes; label can be any text. 
timerdays x  Value of timer x in days, hours, and minutes; label can be any text. 
timersec x  Value of timer x in hours, minutes, seconds; lab can be any text. 
uptime  shows time since Windows started in hours:minutes 
uptimesec  shows time since Windows started in days or hours:minutes:seconds  
uptimedhm  shows time since Windows started in days:hours:minutes. 
uptimedhms  shows time since Windows started in days:hours:minutes:seconds. 
uptimedays  shows time since Windows started in days  
cdcurtrack  current cd track number 
cdlasttrack  last cd track number 
defaultprinter  name of default printer.  
keylog   X if logging keys, empty otherwise.  
keylogfile  name of currently open key logging file, empty otherwise.  
expr (ex)  Evaluates the expression ex, e.g. expr (dunrate/10). 



Windows PowerPro Page 21 Version 3.7 

 
Although expr () can be used to mimic most of the other *info labels, you will save CPU time on 
your system if you use the *info label when it exists.  One appropriate use of expr is a more 
convenient replacement of var v where v is set by a complex expression in a script. 
 
 

Command List Properties 
 
Purpose 
The Command List Properties dialog sets the menu/bar position for a command list, and the 
color, visibility, base height.  You can configure a bar to be invisible. 
 
Configuration 
To access the dialog, select the command list to be configured in the drop down of the 
Command List tab and press the Properties button. You can use the tabbed dialog to access  
command properties which apply whether the command list is a displayed as a bar or a menu, 
properties for bars only, and properties for active buttons and folder buttons on a bar.  Press the 
Apply button at any time to preview the effect of any formatting command on currently visible 
bars. 
 
Bar and Menu Properties 
You can change the command list Name, whether or not tool tips appear, and what size icons, if 
any, appear on the bar or menu when displayed (menus only display 16x16 or 32x32 icons).  
(Note:  PowerPro only reads true 48x48 and 64x64 icons from .ico files; from other files it uses 
stretched versions of the 32x32 icon). 
 
You can also set a background color, a text color, and a font for this command list.  You can set 
the maximum number of characters of text to be displayed (set to 127 to display all text 
specified in the item label).    You can also access tool tip setup. 
 
For situations where you are displaying a command list as a bar and a menu, you can use a 
checkbox to force 16x16 icons for the menu display,  you can use a checkbox to indicate that 
menu text should be taken from the tool tip (and so be different from the bar text), and you can 
use a checkbox to have the maximum text limit apply to bars only. 
 
The hide after feature shown under Bar properties can also be used to close a menu after the 
mouse cursor is off of it for the specified time. 
 
For both menus and bars, you can set a .bmp file to be tiled for bar background.  Use * to have 
PowerPro set the background bitmap to the wallpaper under the bar or menu.  For menus with 
backgrounds, you can set the horizontal offset in the bar section to indent the text and icons on 
the main menu to show a bit map pattern in the left (you may have to set the bar position to eg 
caption to enable the offset field for entry). 
 
Bar Properties 
These apply when the command list is displayed as a bar. 
 
Use "Position" to set the bar position. 
 



Windows PowerPro Page 22 Version 3.7 

Use "height" to set button height in pixels.  All buttons must have same height.  A zero height 
uses the default but you may have to manually set height for vertical or rotated text. 
 
Use "hide after" to set whether PowerPro should hide the bar or menu --  see visibility (hiding 
also applies to both bars and lists shown as menus).   
 
You can specify a screen edge to be bumped to show the bar and the amount of time the 
mouse must be held at the edge to show the bar; this time is the same for all bars.  You can 
also specify that the bump must be within the boundaries of the bar at the screen edge.  If you 
prefer a different approach to showing bars, you can also show bars by defining a hotkey or bar 
or menu command to execute the *Bar showcommand.  Note that "showing" bars applies to two 
cases:  invisible bars and non-top most bars (which are hidden by other windows). 
 
For Win98/2000, you can choose how to use slide animation when hiding and showing the bar.  
You must also check "Use slide animation" on command list|setup. 
 
Use "marker" to create a small marker strip when bars are hidden. 
 
Use "offsets" to specify offsets for positioning in or near the active window and screen edge 
positions. 
 
You can check the following format options for a bar 
border  check to draw a thin black border around the bar 
3d Frame check to show white border at top of bar and dark border at bottom to give 3d 

look to bar; use to size and shape bar if "bar size to sum of buttons" unchecked.  
no flicker:  Eliminates bar flicker (but uses more memory to draw bar). 
vertical bar buttons are aligned beneath one another 
hover clicks if mouse hovers over button, that button is left clicked; set hover time on 

advancedsetup 
flat  check for flat bar; gray check to avoid button border when mouse passes 

over 
same size check to force all buttons to width of first button 
all desks sets bar to be displayed on all virtual desktops; unchecked displays on  desktop 

when bar is first shown 
topmost check to display bar always on top 
bar size if checked, bar is automatically resized to accommodate all buttons; if 

unchecked, use 3D sizing frame to manually size and shape bar (floating or 
fixed position only). 

right icon icons are shown on the right of text 
gradient bar color varied specified number of steps with specified background color in 

middle of color range 
vertical text text is shown one letter per line running down button; set button height >0 too 
rotate text text is rotated and runs up the button; set button height >0 too.  Not all fonts can 

be rotated, you may have to also set font to (eg) Arial using "Own Font" 
text under check to display text under the icon on bar buttons 
center text centers text label 
 
You can also ctrl+right click the bar to get the configuration menu and set format options from 
the Look submenu.  
 



Windows PowerPro Page 23 Version 3.7 

 
You can force new rows on non-vertical bars with the *Format NewBarRow command.  You can 
start a new row and show a horizontal separator line with *Format NewBarRowLine.  Finally, 
you can insert a vertical separator line with *Format BarVerticalLine. 
 
If you gray-check "Hover left clicks", only *Menu commands are activated by hovering over a 
button.  After displaying a menu, if you move the mouse to a different button where left clicking 
shows a menu too, then the first menu is closed and the second menu is opened. 
 
To change a bar size manually, make sure the position is Floating or Fixed, Sizing Border is 
checked (look configuration menu accessed by ctrl-right click), and "Bar size to sum of buttons" 
is unchecked:  then left-drag the bar border. 
 
Active Buttons 
Set the number of active buttons and tray icon buttons and whether they should display icons 
only.  You can also specify that the last button in the command list should be used to set the 
middle and right commands and the colors for active buttons and you can specify whether the 
foreground window should be shown pressed.  You can specify a list of captions to control 
which windows/tray icons appear as active buttons.  If you want this list to apply to tray icons 
only, put a # at the start.  You must install tray icon support before tray icons buttons will work; 
see below. 
 
Folder Buttons 
Specify a folder whose entries will appear as buttons at end of bar. 
 
 

Tool Tip Setup 
 
Use the Tool Tip setup button on the Bar and Menu Properties or the Command List Setup 
dialogs to access a dialog which controls the look of tool tips.  With this dialog, you can set: 
 
Background and text color for tool tips. 
A character used to create multi-line tool tips.  Whenever this character is found in tool tip text, a 
new line is started.  For ecample, you could create one line per command for buttons or menu 
items which have left, middle, and right commands.   
Whether slide animation is used to show the tooltip (Win98/2000 only). 
Whether PowerPro will draw tool tips for its tray icons; this allows multi-line tool tips. 
The delay until tool tips appear for bars. 
The delay until tool tips appear for *Menu Folder and *Window menus (zero means no tool tip). 
 
Active Buttons 
Set the number of active buttons and whether they should display icons only.  You can also 
specify that the last button in the command list should be used to set the middle and right 
commands and the colors for active buttons and you can specify whether the foreground 
window should be shown pressed. 

 

Working with Invisible Bars 
 
The  Bar Properties configure dialog contains options for hiding Windows PowerPro. 



Windows PowerPro Page 24 Version 3.7 

 
Set the time for autohide to a value greater than zero to enable hiding.  When the mouse cursor 
is moved off the bar for this number of milliseconds, the bar will be automatically hidden. 
 
You can also set the amount of time the mouse must be held at the edge to show the bar (this 
time is the same for all bars). 
 
To show the bar, choose a screen edge from the drop down on the Properties dialog.  Bumping 
this screen edge and holding the mouse at the edge for the time specified at the Hot Key setup 
dialog will show hidden bars.  If you want the screen bump to be limited to only showing the bar 
if the edge bumped is within the bar boundaries, check "Bump must be within bar size". 
 
If you want a small marker window to show at the screen edge of a hidden bar, check "Show 
Marker Window". 
 
For Win98/2000, you can choose how to use slide animation when hiding and showing the bar.  
You must also check "Use slide animation" on command list|setup. 
 
You can also show a bar by assigning the *Bar Show or *Bar ToMouse commands to a hotkey, 
another bar button, or menu item and then executing this command. 
 
You can also show all hidden bars from the Setup tab of the configuration dialog. 
 
If you cannot make your bar visible, run the PowerPro Configure program from the accessories 
pproconf.exe program and reset the bar properties to avoid hiding. 

 

Command List Setup Dialog 
 
Purpose 
This dialog controls general appearance of command lists displayed as bars or menus.  It is 
also used to specify the command lists used for  tray icon, auto run, active button icon, tray 
minimized icons. 
 
Configuration 
The Menu and Bar Setup Dialog is selected by clicking on the  Setup button from the Command 
Lists dialog.  A tabbed dialog will appear allowing you to select options for menus only, bars 
only, both bars and menus, and for command lists being used for special purposes such as tray 
icons. 
 
All Menus 
 
Cache Menu Icons:  check to store icons for menus in separate memory managed by 
PowerPro.  This will allow menus to be displayed more quickly but will require more memory.  
Uncheck to use the Windows operating system icon cache.   Gray for caching large icons. 
 
Force cursor over newly opened menus:  if checked, Windows PowerPro will force the mouse 
cursor over newly opened menus; especially useful if you autohide menus after the cursor is 
moved off of them. 



Windows PowerPro Page 25 Version 3.7 

 
Right selects command in menus:  if checked, selecting a menu item with right will execute the 
corresponding command from the command list.  (You may also use middle click to select the 
middle command, but this feature does not work on all systems and currently is not guaranteed 
to be reliable).  You must make sure "Display Menu on mouse down" is not gray-checked to use 
this feature. 
 
Track new windows for *Menu RecentCommands:  you must check this to have PowerPro 
maintain the recent commands menu. 
 
Default no icons  Check to specify no icons on newly configured command list properties. 
 
Hide *Menu Folder  Will automatically hide *Menu Folder and *Clip menus when mouse moved 
off of the menu. 
 
Icons on *Window and *Menu folder menus:  check to include icons on these menus. 
 
All Bars 
 
Less 3D effect:  Less pronounced outlines are used when drawing 3D borders on buttons. Gray 
check to make button height two pixels smaller by eliminating extra space used to draw this 
border. 
 
Stop Alt-F4:  If checked, press Alt-F4 when a Bar is the foreground window will not close the 
bar. 
 
Use timer:  If checked, a timer will be used to ensure refresh of active bars and caption-
positioned bars.  Normally, should be left unchecked. 
 
Hide caption bars if no active windows:  check to hide bars positioned in the captions when 
there is no active window. 
 
Clicking active button of foreground minimizes it:  check to PowerPro minimize the window of 
the active button when clicked and it is the foreground window . 
 
Show tray iconized windows on active buttons:  check to show windows which PowerPro has 
tray minimized on active buttons.  Gray check to show all hidden windows. 
 
Dynamically update text on active buttons:  check to have text dynamically updated on active 
buttons.  You must restart PowerPro after changing this option.  This option may cause the 
taskbar to display blank buttons on some Windows systems. 
 
Display menu on mouse down on bar button:  if checked, *Menu Show commands are executed 
as soon as you click down on a mouse button with this command.  Gray check to have the 
mouse up select the menu item.  Gray checking is not compatible with checking "Right selects 
commands in menus option" option (see above). 
 
Include dialog windows for caption position:  check to include dialog windows when positioning 
bars in captions. 
 



Windows PowerPro Page 26 Version 3.7 

Move Bars to edge:  If checked, PowerPro automatically moves screen edge bar positions to 
the appropriate screen edge. 
 
Drag to move:  If checked, left click and drag any button to move bar; if unchecked, you must 
ctrl-left click and drag to move. 
 
Use slide animation:  Bars are shown and hidden using a slide animation (Win98/2000 only). 
 
You can set the marker window size in pixels.  Marker windows can optionally be displayed for 
hidden bars. 
 
You can set the time the mouse hovers over a button for the button to be clicked, assuming 
"Hover Clicks" is checked on the command list properties of the bar. 
 
All Bars and Menus 
 
You can set the default color, text color, and font for bars and menus. 
 
Omit these strings :  insert a list of strings separated by commas; these will be removed from 
the window caption displayed in *Window menus and active buttons. 
 
List of captions of hidden windows   Insert a list of captions for hidden windows to appear on 
active buttons. 
 
Default background   If set, this background will be used for all bars and menus.  You can 
override for an individual bar or menu by setting the background for that bar or menu to none. 
 
Special Command Lists 
 
Run Monitor:  If checked, PowerPro will run the command list called Monitor once per second 
(gray check for once every two seconds).  This can be used to perform background processing, 
eg updating bar item format.  Make sure to debug your command list by manually *Script 
Running it before activating the repeated running.  You can also used the command *Exec 
Monitor reverse to set or clear the repeated running of the Monitor command list. 
 
Use PowerPro tooltips:  If checked, PowerPro will draw tool tips for its tray icons; this allows 
multi-line tool tips. 
 
Using the drop down boxes, you can specify that the commands on a command list should be 
used for: 
 to display tray icons 
 to provide a command list to control commands to be run when a specified  window first 
opens 
 to provide a command list control the icons assigned to tray minimized windows 
 to provide a command list control the icons assigned to active buttons 
 

Active Window Switching with Buttons 
 
Purpose 



Windows PowerPro Page 27 Version 3.7 

If you want to configure your own version of the task bar, you can create Windows PowerPro 
buttons which automatically track each top-level window on your system so you can quickly 
switch to a new active window by left clicking a button and activate a menu to close or minimize 
by right clicking the button.  This is an alternative to the list of active windows menu item which 
can also be used for active window switching.  The advantages of buttons are that all active 
windows are immediately visible on the button bar and that switching is done with a single click.  
The disadvantage of the button bar is that extra desktop space is used. 
 
Configuration 
 
You set up active task buttons with the Command List Properties dialog.  To display active 
buttons, set the maximum number of buttons to a number greater than zero.  Windows 
PowerPro will display a button for each active task. You can have active buttons along with 
normal buttons, or you can have a bar of active buttons only (in which case the command list for 
the bar is empty). 
 
To display text on active buttons, you must set a button width to accommodate text by 
configuring the final (or only) command list item to have the desired button width in pixels and 
by checking "Last for Setup" on the active button tab. 
 
Normally both button and text will be displayed on an active button.  To display the icon only, 
check the "Icons Only" check box. 
 
To select which windows appear as active buttons, enter captions in the edit box of Active 
Button properties. 
 
To ensure that active button text is dynamically updated, check "Dynamically update active 
button text" on Command List|Setup|All Bars. 
 
You can control the look of active buttons and the commands for all active buttons by checking 
"Last item for setup".  In this case, include an extra item in the command list at the end.  This 
last item in the command list is not displayed as a button.  Instead its text and background 
colors and its commands are assigned to each active button.  If you assign a *Windows 
command to this last button, use the activebar target window to have the *Window action apply 
to the window selected by the active button. 
 
Normally, the bar size is fixed and the buttons grow and shrink. Instead, you can cause the bar 
itself to set its size according to the number of active buttons by checking "Bar size set to sum 
of  buttons" on Bar Properties or the Look submenu shown by ctrl-right clicking the bar. Set the 
button width for on the "Last item for setup" button; otherwise the button width will be set to the 
width of an icon. 
 
Further Information 
 
When displaying the icon for a window on a button, Windows PowerPro normally uses the  
window class icon.  You can specify your own icons for programs by creating a special 
command list and selecting this command list with the icon menu drop down on the Command 
List Setup dialog.  Create one entry in the list for each program with an icon that you want to 
specify.  Set the list item name to =exename, where exename is the name of the program exe 
file without the path and without the .exe extension (eg =winword for Microsoft Word).  Leave 
the item commands set to (none).  Set the item icon to the icon you wish to use for all windows 
from exename. 
 



Windows PowerPro Page 28 Version 3.7 

You can control whether hidden and tray minimized windows are displayed on active buttons 
with a check box on the Menu and Bar Setup dialog.  You can also use this dialog to select 
specific hidden windows to be displayed by including them in  a caption list. 
 
You can use the omit list to cause any active window to be excluded from the active task 
buttons or to edit the name of text for the active task buttons. Or, you can use the *Exec 
Window built-in command to hide the window. 
 
You can cause activated task windows to be centered using a switch on the GUI Control dialog.   
Gray check to center the mouse cursor as well. 
 
You can control whether or not active buttons are sorted using Command List|Setup.  If sorted, 
you can control the sort order of active button by using the "Sort order for active buttons" edit 
box on the command list setup.  Enter a list of caption entries separated by commas and using 
*xxx* for captions containing xxx, xxx* for captions starting with xxx, *xxx for captions ending in 
xxx.  Then any active buttons with captions matching the first entry will sort to the start of the 
bar, followed by any matching the second, and so  on; captions not matched appear at the end.  
For example, if this field was set to *explor*,*agent* then any windows containing explor in the 
caption would start, followed by any containing agent, followed by all others. 
 
Some programs interfere with the hooks PowerPro uses to track active windows for the active 
bar.  If you find PowerPro active bars are not responsive, try checking "Use timer for active 
buttons" on Advanced dialog. 

 
 

Working with Tray Icons 
 
(Win98/95 only) 
 
You can access all icons in the system tray with a *Menu Tray. or with active buttons.  For the 
menu or a button, left or right click to activate the correspond tray icon function; middle click (or 
left+shfit) to access the double click function of the tray icon. 
 
The text on the menu or button is set from the tool tip of the tray icon. 
 
Before using this feature, you must install tray support.  To do so, activate the configuration 
dialog, for example by ctrl-right clicking a bar and selecting configure, select the setup tab, and 
press the "Install Tray Support" button.  You will need to reboot your system to start this feature 
(this allows PowerPro to capture all tray icons as they are created). 
 
You can also use the *TrayIcon command to work with or hide individual tray icons. 
 
If you want to display only certain tray icons, you can use the edit box on the Command List 
Properties|Active Buttons tab to specify the exe file name or window caption for the tray icon.  
To find out the exe file name, you can use the Windows 98 program "System Information" or 
you can use *Exec WindowInfo over a window displayed by the tray icon..  To find the window 
caption, try running the command *Menu Show menu hidden which will show all windows and 
their captions.  For example, the Windows 98 dial-up tray icon shown when a dial-up is active is 
shown by the program rnaapp.exe, so putting 
#=rnaapp 
will show this tray icon only (the # means display of active windows is not affected). 



Windows PowerPro Page 29 Version 3.7 

 
If you logoff, you will lose tray icon support.  You must reboot to restore it. 
 
This feature only works reliably in Win95/98.  Some users have got it to work in W2K and XP, 
but others reports it makes their systems unstable. 
 

Creating Bar Buttons from the Files and Subfolders of a Folder 
 
You can add buttons to the end of a bar based on the files and folders in a subfolder.  Left 
clicking on a button on such a bar runs the associated file or opens the associated subfolder 
with *Menu Folder.  Right clicking on a button shows an explorer view of the folder (if a file is 
clicked) or the subfolder (if a subfolder is clicked). 
 
To create folder buttons, create a command list and make sure you check "Auto show as bar".   
You can create ordinary buttons with the command list or you can leave the command list empty 
to have only buttons from the folder.  Then use the Command List | Propertiesdialog and set the 
name of the folder in the edit box "Show Entries in this Folder as Left-Click Buttons at end of 
Bar.  Use a wildcard file name to select the files to display (eg *.* or *.txt) or you can omit the 
wildcard file name which is the same as specifying all files with *.* .  When the bar is shown all 
entries in this folder will be shown as buttons. You can use &() expressions in the folder name; 
the expression is re-evaluated each time the bar is closed and opened (or refreshed). 
 
 
Check "Show text" to have the file name shown as text beside the icon.  You can set the 
maximum number of characters in the label with Maximum Text Label on Properties. 
 
Check "Auto refresh" to have PowerPro automatically update the bar any time a file is added or 
removed from the folder.  Or you can manually refresh the bar by ctrl-right clicking on the bar 
and selecting Refresh Folder Buttons. 
 
Check "Show hidden to show hidden files.  Check "Sort folders to start" to put buttons 
representing folders at the start of the set of buttons.  Check "2- pane explorer window" to show 
a 2-pane explorer window when a folder button is right clicked.  Select sort method from drop 
down. 
 
Use the Menu Format button to set the *Menu Folder format of the menu displayed when you 
left click a button assigned to a subfolder. 
 
You can set the look of the buttons, whether tool tips are displayed, the size of the icons, and so 
on using the Properties of the command list. 
 
You cannot use active buttons and folder buttons on the same bar. 
 

 

Tray Icon Buttons 
 
Using the Command List Setup dialog, you can specify that Windows PowerPro display a the 
items in a command list as a tray icon on the Win95/NT4 task bar.  Configure a command list to 
contain the tray icons you want and then select that command list on the Command List Setup 
dialog. 



Windows PowerPro Page 30 Version 3.7 

 
You can also use this feature to replace the text of the clock in the system tray by any 
dynamically varying text using a *Info.  Configure any command list item name with a text label 
and this label will replace the clock. 
 
Left/middle/right mouse clicking on the tray icon runs the commands configured on the item. 
 
You can include tool tips for any tray icon. These tool tips can contain dynamically varying text 
using a *Info labels; note however that Windows limits tray icon tool tips to at most 63 
characters. 
 
The icon displayed in the tray is the one chosen for the item.  If no icon is available, the 
Windows PowerPro icon is used. 
 
The width of the text item replacing the clock is set from the width field.  If the width is zero, then 
the length of the initial value of the *Info field is used.  If the width is negative then the width is 
given by the initial width of the *Info field plus the absolute value of the width (i.e. the width 
provides a buffer beyond the initial field size). 
 

 

Omitting Windows and Words from Active Window Lists 
 
You can use the omit list edit box on the Menu and Bar Setup dialog to omit either words from a 
window name or to omit windows completely from the list of active windows or the active task 
buttons. 
 
To omit a word, type the word followed by a comma.  For example, you could use this technique 
to delete vendor names. 
 
To omit an entire window, type the window name as it appears in the caption title of the window 
followed by a comma, e.g. Program Manager in the omit list will mean that no entry for Program 
Manager will appear. 
 
If you include a string followed by an asterisk (*) and comma in the omit list, then any active 
window with caption text starting with that string will be deleted.  For example, 1MBFort* will 
delete any program name starting with 1MBFort. 
 
You can also delete any window associated with the program filename.exe by including 
=filename in the omit list (no .exe, no path). 
 

Hiding Windows 
 
You can use the *Exec Hide Window built-in command to hide windows.  You might use this if 
you do not want a window to appear on the Wndows TaskBar, or the Windows PowerPro the list 
of active windows or the active task buttons. 
 
When you execute a hide window command, the cursor changes to a cross.  Left click on the 
window you wish to hide.  This window, its top-level parent, and all the parent’s children will be 
hidden. 



Windows PowerPro Page 31 Version 3.7 

 
You cannot hide a Windows PowerPro window or the desktop window.  Some other programs 
will also refuse to be hidden. 
 
If you execute hide window but then decide you do not want to hide a window, left click the 
mouse on the desktop or on a Windows PowerPro window to cancel the operation. 
 
If you want to show a hidden window, configure a Windows PowerPro list of active windows to 
show hidden windows, assign this command to a menu, then execute the menu and select the 
hidden window from the list. 
 

Automatically Running Commands when Windows Open 
 
You can automatically run commands when a window with a specified caption is first created.  A 
command could send keys, or press a button, or set the window position, or move the window 
to an existing virtual desktop, or execute any other Windows PowerPro command. 
 
Use a command list to do this.  Each item on the command list corresponds to a command you 
want to run when a window opens.  The command list item name specifies a caption list of the 
window.  Use xxx* as a command list item name to match any captions starting with xxx, *yyy to 
match any captions ending in yyy, and *zzz* for captions containing zzz anywhere.  Use c=*xxx* 
to match windows with a class containing xxx. You can also specify a entry of =exename to 
match any window created by the program with .exe file name exename (no path, no .exe).  
 
Finally, you can specify filedialog to match file open/save/save as windows, explorer to match 
single or dual pane explorer windows, explorer1 for single pane explorer windows, or explorer2 
for dual-pane explorer windows.  
 
Specify the command list name in the "Open" drop down box on the Command List Setup 
dialog.  Once this is done, each time a new window is opened and the caption matches a 
command list item name on that command list, Windows PowerPro will execute the 
corresponding command from the command list.  
 
To press specific buttons on the windows, use send keys to send alt-x, when x is the button 
mnemonic letter, with {to autorun} at start of the *Keys sequence. 
 
To position the newly opened window on the screen, use *PowerPro Window Control with 
autorun as the target window id of the command. 
 
To show a menu, you can use *Menu Show.  However, you may have to put *wait 1 in 
command and *Menu Show in more commands if you find the menu disappearing as soon as it 
is shown due to other activity on your system when the window first opens. 
 
If you only want to run commands if the new window is a dialog, precede the caption/path with a 
#.  If you only want to run the command if the new window is not a dialog, precede the 
caption/path with a  $. 
 
If you want the command to apply to single pane explorer windows (folder windows) only, 
precede it by an !.  If you want the command to apply to 2-pane explorer windows only, precede 
it by an @. 
 



Windows PowerPro Page 32 Version 3.7 

Windows PowerPro normally executes all commands in the command list which match the 
caption.  However, if the caption matches a the command 
Command *Script 
Parameter quit 
then no further command list entries are checked. 
 
Examples 
Suppose you create a command list with these entries and specify its name on the Command 
List Setup. 
Name  $*notepad 
Command *Window Position 30 50 100 200 autorun 
 
Name  *bothersome dialog* 
Command *Keys {to autorun}{en} 
 
Name  *explor* 
Command **Vdesk MoveAutorun explorer 
 
Then whenever a non-dialog window with caption ending in notepad was opened, it would be 
positioned to 30 50 and sized at 100 200.  Also, whenever a window with "bothersome dialog" in 
its caption was opened, the enter key would be sent to it.  If a window containing Explor in its 
caption appeared, it would be moved the desktop named explorer (this desktop must already 
exist). 
 

Adding Entries to the Explorer Right Click Context Menu 
 
Purpose 
 
When you right click a file or a folder in Explorer, a context menu is displayed.  Actually, two 
different menus are displayed: one for files and one for folders.  PowerPro lets you add options 
to either or both of these menus.  You can configure to display menu items for all files/folders 
and you can also configure to selectively display other items for selected file names or types. 
 
Configuration 
 
First, you must install PowerPro context menu support by pressing the button on the Setup tab 
of the configuration dialog.  Then you need to create a command list to hold the items you want 
to add to the menus.  If you want to add to the menu for files, you must create a command list 
called Context.  If you want to display menu items beside folders, you must create a command 
list called ContextFolder.  The command list names must be Context for files and ContextFolder 
for folders.   
 
The Context item names and associated commands will be added to the right click menu for all 
explorer files.  If you select one of the items, the left command will be executed with the 
selected file path added at the end of the command line.  For example, if you had an item 
command *Wallpaper ChangeTo, and you selected file c:\path\mypaper.jpg, then the command 
executed would be *Wallpaper ChangeTo c:\path\mypaper.jpg.  If you select several files, the 
command is executed separately for each one. 
 



Windows PowerPro Page 33 Version 3.7 

If you want the selected file name to be placed in the midst of the command, put a | where you 
want the file name; for example 
*File Copy "|" c:\standard\output.txt 
will copy the selected file to c:\standard\output.txt.  
Note that you must include the quotation marks if appropriate when using |.  Use || to get the 
folder excluding the file name. 
c:\prog\salamand.exe "|| 
"as a command will run salamand.exe with the folder path on the command line. 
 
If you right click on a shortcut in explorer, the file pointed at by the shortcut will be used. 
 
You can use *Format to insert separators, columns, and submenus in the menu. 
 
The command list will be inserted directly into the main menu.  Start with a *Format 
StartSubmenu if you want to insert the items on a submenu. 
 
Before processing commands, the variable Context is set to 0;  this allows the files in multi-file 
selection to be counted or special processing for the first file by using Context as a flag. 
 
Displaying Different Items for Different Files 
 
You can use *Format Context to make the items displayed depend on the file selected.  The file 
name is matched against the *Format text; for example, if the *Format Context test is *.txt, then 
the items after the *Format Context will only be displayed if the file selected ends in .txt.  If you 
select several files, the first one determines the text matched against *Format Context. 
 
You can use multiple *Format Context commands to match different types of files.  You can use 
any of the *xxx*, *xxx, and xxx* patterns to match file names:  *xxx* matches a file name 
containing xxx, *xxx matches a name ending in xxx, xxx* matches a name starting with xxx. 
 
Restrictions 
 
You can display at most 128 items.  You can display at most 9 submenus.  You cannot embed 
*Window menu or *Menu Folder commands. 
 
Example 
 
Suppose the Context command list is set to the following items. 
 
Item 
Name 

Command, Action, Parameters 

Purge *Exec Prompt 1 Purge 
*Script if flag 1 
*File DeleteNoRecycle 

Edit *Format StartSubmenu 
WordPad C:\windows\wordpad.exe 
NotePad C:\Windows\notepad.exe 
Myeditor C:\Program Files\Myeditor\myeditor.exe 



Windows PowerPro Page 34 Version 3.7 

 *Format EndSubmenu 
 *Format Context *.bmp, *.jpg 
Wallpaper *Wallpaper ChangeTo 
Edit C:\program files\image\image.exe 
 *Format EndContext 
  
 
Clicking on a file will display a file purge item and a submenu of editor selections.  If the 
selected file is a .bmp or .jpg file, then items for wallpaper changes or processing with the image 
program will also be displayed. 
 
 



Windows PowerPro Page 35 Version 3.7 

 

Hot Keys and Mouse Action Commands 
 
Purpose 
Hot/Keys and mouse action commands let you associate a hot key or a mouse movement with 
starting a program, changing the look of a window, changing your windows configuration, 
sending keys, showing a menu, or performing any other Windows PowerPro function.  Hot keys 
let you expand the way you interact with Windows.   
 
Configuration 
The Keys/Mouse dialog is displayed when you click on the Keys/Mouse tab.  Press Add to add 
a new hot key, Delete to remove one, and Edit (or right or left doubleclick) to change a hot key. 
 
Further Information 
 
Hotkeys normally do not function if a Dos or console windows is active.  But you can change 
this and many other aspects of hot key performance with the Setup dialog: 
 

You can create global macro keys to paste text phrases or paragraphs by assigning the *Keys 
built-in command or the *Clip File command to a hot key.  Or create a menu of *Keys 
commands and *Menu Show the menu using a hot key/mouse action. 
 
You can assign double click to a mouse action by associating the mouse action with the *Mouse 
command. 
 
By using mouse stroke hot keys which execute *Menu Show commands and which depend on 
which program is active, you can define menus which depend on the active program and which 
appear after a mouse stroke. 
 
The Win modifier key is also used internally by Windows; you cannot redefine hot keys that 
Windows has already defined. 
 
Note on chording:  some mouse drivers "miss" the second mouse up when two mouse keys are 
released at once leading to strange mouse behavior; to clear, you may have to press and 
release each mouse key separately.  

 

Hot Key and Mouse Action Setup 
 
Purpose 
Use the Setup tab to fine tune Hot Key/Mouse Action command execution. 
 
Configuration 
You can use the check boxes to specify that double tapping is needed for the tap ctrl/alt/shift hot 
keys or for function key hot keys (this only applies to function keys used without Alt, Ctrl, Shift, 
Win).   
 
You can use the check box to specify that Windows PowerPro will wait for up to 1.5 seconds for 
all modifier keys (alt, ctrl, shift, win) to be up before executing any hot key command.  If 
unchecked, Windows PowerPro only waits for commands which send keys. 
 



Windows PowerPro Page 36 Version 3.7 

To make it easy to navigate menus shown by hot keys involving Ctrl or Shift, you can use a 
check box to specify that Ctrl is Enter and Shift is down arrow while a menu shown by a hot key 
is open.  Note that you can assign a *Show Menu hot key to Ctrl+down (arrow) or Ctrl+up arrow 
as well, and then use the arrow and Ctrl keys to navigate the menu.  Use Alt or Esc to dismiss a 
menu. 
 
To avoid activating the hot key action if a full screen program or a DirectX program is running, 
check "Disable bump or screen corner if full screen program running". 
 
You can use the checkbox to disable screen edge bump and screen corner hot keys while a 
menu is showing to prevent accidentally closing the menu when selecting an item near the 
screen edge or corner. 
 
You can specify the PowerPro should ensure the list of hot keys on the configuration dialog 
reflects the local keyboard. 
 
You can specify that PowerPro should recognize keyboard hotkeys entered when a Dos or 
console window is active, except for tap keys and *Macro keys.  Gray check if you find slow 
performance with *Keys commands; however, if you gray check you may have problems if you 
send hot key characters with *Keys. 
 
You can use the checkbox to specify that PowerPro should  prevent the mouse wheel actions 
from being sent to other programs when a mouse forward only or back only hot key is defined.  
Gray check to block the sending only if the target field is matched.  This may hot work in all 
cases. 
 
You can specify the character to be used for char then key hot keys.  The character cannot be a 
letter or a digit, and you cannot use the shift key with the character. 
 
You can specify a delay in milliseconds for the screen corner and screen bump commands; the 
command will only be executed if you leave the mouse cursor in the corner or at the edge for at 
least the specified delay. 
 
You can specify a delay in milliseconds for the tap key commands; the command will only be 
executed if the tap key is held down for less than the specified delay time.   
 
You can specify a minimum hold time for mouse press and hold hot keys,  
 
You can fine tune the mouse stroke hot keys by adjusting the minimum length of the stroke in 
pixels,  the maximum deviation from horizontal/vertical, and maximum time allowed to complete 
the stroke.   You can also specify a stop time; if the stop time is greater then 0 then the mouse 
must stop after that number of milliseconds after the completion of the stroke for the hot key to 
be activated.   
 

Entering Hot Key/Mouse Action Information 
 
Key/Mouse:  At the top of the hot key edit dialog is a set of check boxes and a drop down used 
to select hot keys/mouse actions and modifier keys for the hot key/mouse action.   
 
Disable:  Check "Disable" to disable a key without removing it from the list. Disabled keys are 
prefixed by X- in the list of hot keys. 



Windows PowerPro Page 37 Version 3.7 

 
Target:  You can assign hot keys/mouse actions which run only when a specified windows are 
active or when the mouse is at a specified position by using the Target Window edit box.  Leave 
this edit box blank to have the hot key apply to any window.  Enter a captionlist to have the hot 
key apply only to the windows or mouse positions matched by that list. 
 
(To help you remember the purpose of the hot key, you can record a comment in the Target 
Window edit box by putting a semi-colon (;) ahead of the comment.) 
 
The command entry controls at the bottom of the edit hot key dialog are used to change the 
command or  builtin (*) command run when the hot key is activated. 
 

Hot Key/Mouse Action Explanations 
 
You can use these actions to activate commands with hotkeys. 
 
prefix key then char  press and release the prefix key then press any key  
 
screen top left   move mouse to top left screen corner 
screen top right  move mouse to top right screen corner 
screen bottom left  move mouse to bottom left screen corner 
screen bottom right  move mouse to bottom right screen corner 
 
bump screen   moving mouse to screen edge 
 
left anywhere   left mouse click anywhere 
middle anywhere  middle mouse click anywhere 
right anywhere   right mouse click anywhere 
 
left desk   left mouse click on desk top 
middle desk   middle mouse click on desk top 
right desk   right mouse click on desk top 
 
left caption   left mouse click on anywhere caption; if no modifier keys, you 
must wait momentarily  
middle caption   middle mouse click anywhere on caption 
right caption   right mouse click anywhere on caption 
right caption double  right mouse double click anywhere on caption 
 
middle caption (left half) middle click on left half of caption 
middle caption (right half) middle click on right half of caption 
right caption (left half)   right click on middle half of caption 
right caption (right half)  right click on right half of caption 
 
middle sys menu  middle click on system menu icon in caption 
right sys menu   right click on system menu icon in caption 
middle minimize  middle click on minimize icon in caption 



Windows PowerPro Page 38 Version 3.7 

right minimize   right click on minimize icon in caption 
 
left close box   left click on close box icon in caption 
middle close box  middle click on close box icon in caption 
right close box   right click on close box icon in caption 
middle maximize  middle click on maximize/size icon in caption 
right maximize  right click on maximize icon/size in caption 
 
middle border   middle click on window border 
right border   right click on window border 
 
middle double anywhere middle double click 
right double anywhere  right double click 
 
left hold   press and hold down left mouse button 
middle hold   press and hold down middle mouse button 
right hold   press and hold down right mouse button 
 
left drags  Separate left, right, up, and down short drag hot keys are supported.  
You can control the maximum number of pixels that PowerPro will interpret as the hot key using 
Configure|Keys|Setup. 
 
while forward/back  move mouse wheel one position forward then quickly back; must 
be at least one second after any other mouse wheel movement to avoid inadvertent activation 
 
while forward only or back only  move mouse wheel one position forward or back.  Use 
Key|setup to control whether the mouse wheel is also sent to other applications 
. 
 
chord l+m   chord (simultaneously press) left and middle button 
chord l+r   chord (simultaneously press) left and right button 
chord m+r   chord (simultaneously press) middle and right button 
 
horizontal move  move mouse back and forth horizontally 
vertical move   move mouse up and down vertically 
 
tap shift   press and quickly release shift key 
tap ctrl   press and quickly release ctrl key 
tap alt    press and quickly release alt key 
tap caps lock   press and quickly release caps lock key 
tap apps   press and quickly release apps  key (beside right ctrl) 
 

Window-Specific Hot Keys 
 
Purpose 



Windows PowerPro Page 39 Version 3.7 

You can define hot keys which function depending on whether or not windows you specify are 
active or whether or not the mouse is at a specified position.  This allows you to define hotkeys 
to have different actions depending on the active window.  
 
Configuration 
To define a hot key which only functions for specified programs, define a hot key as usual, but 
use the Target Window edit box on the hot key configuration to enter the list of windows for the 
hot key.  
 
To define a hot key which functions for all but a specified list of programs, put a ~ at the start of 
the Target Window edit box and then list the windows for which the hot key is to be ignored. 
 
For example, the following command definition sends the key sequence Alt-F S Alt-F4 to 
NotePad and Explorer only (this sequence saves the active file and then exits): 
 
Command:  * Keys 
Parameter:  "%fs%{f4}" 
Target Window  =Notepad,Exploring* 
 
You can define the same hot key several times if you want to use the same command for 
several programs or you can define the same hot key to mean different things in different 
programs. 
 
Instead of windows, you can specify that the mouse must be at a screen corner or screen edge 
or quadrant with @topleft, @topright, @bottomleft, @bottomright, @top, @bottom, @left, 
@right, @quadtopleft, @quadtopright, @quadbottomleft, @quadbottomright.  
You can define a hot key to have specific meaning for certain programs and other meanings for 
other programs by defining the hot key multiple times with different Commands and Target 
Window entries.  
 
When you press a key which is a hot key, Windows PowerPro uses the following searches to 
select from the possibilities: 
 
First, search to see if there are any hot keys defined solely for the currently active window.  If so 
use them. 
 
If there are no hot keys specifically for this window, but there are hot keys for all windows or all 
but certain windows (and the active window is not excluded), execute them. 
 
If the only hot keys which are defined are specific to other programs, then send the raw input 
key to the currently active program.  
 

Scheduler 
 
Purpose 
Use the Scheduler dialog to set alarms to run commands or display messages at predefined 
times.  You can set alarms to repeat on a regular basis.  You can also set alarms to be run after 
your computer has been idle for a specified time, when an idle period ends,  and for when 
Windows PowerPro is initially started. 
 



Windows PowerPro Page 40 Version 3.7 

Configuration 
The list box of the alarm contents dialog shows the list of alarms, sorted with the earliest at the 
top.  Use the New button to add a new alarm, the Delete button to remove an alarm, or use the 
Edit button or double click on an alarm to change it.  You can also right click on the list of alarms 
to access a popup menu. 
 
Adding or changing an alarm activates the Edit Scheduled Command dialog.   
 
Further Information 
 
Alarms are usually used to start commands, but you can also use alarms to close running 
programs by running a *Window close command. 
 
To quickly add a new message box (reminder) alarm, run the *Configure AddReminderMessage 
command. 
 
To run a series of commands when an alarm is rung, use the alarm to execute a *Script run 
command.  To run a series of commands at a startup, associate a startup alarm with a script. 
 
You can specify the year, month, day ordering for dates, and other aspects of alarms,  using the 
Setup dialog. 
 
Windows PowerPro only checks to see if a scheduled event should occur once per minute.  If 
you set an event for now, it will not occur until the next minute. 
 
PowerPro will not run scheduled events while the Configuration dialog is open. 
 
When a message box alarm rings, you can change the message text and re-schedule it, if you 
like.  You can select the time until the next alarm from a drop down box or by entering at as 
months:days:hours:minutes.  When the alarm message is shown, for message box alarms 
which you show repeatedly, you can request that the message alarm be copied and shown 
again as well as being saved to be shown again after the interval time. 
 

Entering Information for A Scheduled Command 
 
Type:  Select from an idle, post idle, start-up, or normal alarm.  Idle alarms are rung after the 
specified number of hours and minutes of no keyboard or mouse action, start-up alarms are 
rung when Windows PowerPro starts, and normal alarms are rung at a specified time. 
 
Date and Time:  Set the scheduled time for normal alarms using the date, hour, and minute 
controls. 
 
Interval:  Scheduled commands can be configured to repeat:  use the interval drop down to 
control whether and when the alarm is recycled to be re-used.  You can select a standard recyle 
interval from the drop down box or you can enter a specific interval as up to four numbers 
separated by colons:  months:days:hours:minutes. 
 
Command:  Enter the command to be run in the command entry controls at the bottom.  Use the 
builtin (*) command *Message to enter a reminder message. 
 



Windows PowerPro Page 41 Version 3.7 

Run if missed:  Check to have command run if it occurs when PowerPro is not running:  missed 
events will be run once when PowerPro next starts.  This setting gives individual control of 
whether missed events are run.  You must uncheck the setting on Scheduler|setup which 
applies to all alarms for if it is checked all missed events are always run. 
 
No sounds:  Check to disable any sound for this event regardless of sounds set on scheduler 
setup. 
 
Log:  Check to have alarm actual time and command written to the log file pproconf.alarmlog 
each time the alarm is activated.  You can also check "Keep Log File" on Scheduler|Setup 
dialog to have all alarms logged, regardless of whether the Log item is checked for any 
individual alarm. 

 

Scheduler Setup 
 
Purpose 
 
Windows PowerPro has alarms to let you start commands at defined times.  The Scheduler 
Setup dialog provides control of these features. 
 
Configuration 
 
The Scheduler Setup dialog is displayed when the Setup button on the Scheduler dialog is 
clicked.  Set check boxes to: 
 

Have Windows PowerPro ring alarms which occur when Windows PowerPro is not 
active.  Otherwise, missed alarms are not rung but are recycled or discarded according 
to the alarm setting. (However, alarms less than four minutes old are always rung). 
Play the alarm sound  when an alarm displays a message box. 
Play the alarm sound when a command is run by an alarm. 
Keep an alarm log. 
Specify that a ringing alarm should stop any running screen saver. 
Specify whether captions for alarm message boxes should be set the to message 
Specify whether or not alarm messages should be shown on top of the active window 
when the alarm rings.  Gray-check to specify messages to be shown "always on top". 
Specify whether Escape should close alarm message boxes. 
Specify whether the date picker or separate year/month/day edit boxes should be used to 
set the date for alarms in the Scheduled item dialog. 
 

The dialog also contains several drop down lists which you use to: 
 

Set the format for dates in the alarm list. 
Set the screen position for alarm message windows. 
Set a chime at a regular time during the hour (eg every 15 minutes). 
Set a resource warning level percentage to have Windows PowerPro display a message 
box whenever GDI or USER resources fall below this level.  You can also monitor 
resource usage with a button label set by the command list item dialog. 
 

Use the Media dialog to set the sound associated with alarms and chiming. 



Windows PowerPro Page 42 Version 3.7 

 

Running Programs After the System is Idle for a Specified Time 
 
You can run a program after the system has been idle for a specified time by using an alarm.  
For Windows PowerPro, idle means that no keyboard or mouse input has been received.  Other 
programs may be running but as long as no keyboard or mouse actions occur then the system 
is considered to be idle.  You can also use post-idle alarms to run programs after the idle period 
ends. 
 
Use the radio button to select an idle alarm.  Then set the time to the amount of idle time to 
elapse.  For example, set the time to 00:30 to indicate that the program should be run if the 
system is idle for 30 minutes. 
 
For post-idle alarms, select the post idle radio button.  The post idle alarm command will be run 
after you move the mouse or press a key after an idle alarm has occurred. Note that you must 
use an idle alarm in order for the post-idle alarm to function; you can use an idle alarm with 
command set to (none) if necessary.  When a post-idle alarm occurs, the *Script variable 
lastidletime is set to the total number of seconds the computer was idle (including idle time 
before the idle alarm occurs). 
 
For example, if you want to mute sound while you are away from the computer, use an idle 
alarm of *Exec VolumeAll 0 and a post-idle alarm of  *Exec VolumeAll 255. 
 
The minimum idle time is one minute. 
 
You can have many idle alarms each with different idle times.  
 
The Interval setting for idle alarms is forced to be "Save for re-use".  If you want to remove an 
idle alarm, you must delete it with the configuration dialog. 
 
If the program to be run by the idle alarm is already running, Windows PowerPro will not restart 
it.  
 
Windows PowerPro only detects mouse or keyboard events which are directed at GUI 
programs.  It does not detect input to Dos or Console programs.  If you use such programs 
extensively, you may find Windows PowerPro activates idle alarms in error. 
 

Alarm Log 
 
You can ask Windows PowerPro to log alarm events by using the Keep Alarm Log check box 
on the Scheduler Setup dialog. 
 
The log file will have the same name as the configuration file used of Windows PowerPro, 
except that the file extension will be .alarmlog.  For example, the log file for the default 
configuration is PowerPro.pcfg.alarmlog.  The log is always placed in the same directory as the 
Windows PowerPro .pcfg file. 
 
A log file entry will be written whenever an alarm rings.  It will consist of the following fields, 
separated by blanks: 
 



Windows PowerPro Page 43 Version 3.7 

Current Year 
Current Month 
Current Hour 
Current Minute 
Alarm Year 
Alarm Month 
Alarm Hour 
Alarm Minute 
Alarm command and parameters. 
Alarm work directory/message. 
 



Windows PowerPro Page 44 Version 3.7 

Timers  
 
Purpose 
Windows PowerPro has 26 timers that you can control and optionally display as button labels.  
The timers are identified by the single-letter labels a, b, c, ..., z.   
 
Timers can be used to launch commands at three different times:  when the timer starts, when it 
stops, and at a specified reset interval. 
 
Timers can also be used to track time spent online or using a specific program.  Windows 
PowerPro can produce a timer log to detail this tracking information. 
 
Configuration 
You can change timer settings using the dialog or using commands. 
 
To access timers from a dialog, select the Timers tab from the configuration dialog.   
 
You can also start, stop, toggle, and clear any of the timers with built-in  *Timer commands.  
This command allows the following actions: 
 
Start  starts the indicated timers 
Stop  stops in indicated timers 
StartStop start the timer if stopped; stops it if it is running. 
Clear  zeros the timer 
Set  sets and starts or stops the timer 
 
For Start, Stop, StartStop and Clear, you also need to enter the single letter identifications of the 
timers to be affected.  You can enter more that one timer, but do not put blanks between the 
letter of the timers. 
 
You can also use the Set Timer command to start, stop, or toggle timers and to set their value. 
 
Using the item dialog, you can have Windows PowerPro place a timer as the label on any 
button.  Use the *Timer entry for the item name field in this dialog to indicate which timer is to be 
displayed.  You can also a label is to be shown with the timer value. 
 
A running timer is displayed in the form hhhh.mm (hours, then a period, then minutes). 
 
A stopped timer is displayed in the form hhhhxmm. 
 
To automatically clear a saved timers once per day, set up an alarm with these characteristics 
(using timers c and g for example): 
 Time:   12:01 AM 
 Interval   Alarm again in 1 day 
 Command:   *Timer Clear cg 
 



Windows PowerPro Page 45 Version 3.7 

The "Ring Missed Alarms" checkbox on the Setup dialog must also be checked for this to work 
(unless you start Windows PowerPro each day at 12:01!).  You can use a similar technique to 
clear timers once per month (ring on first of month at 12:01) 
 
You can ask Windows PowerPro to log all timer events in a file.  Check the "Timer Log" 
checkbox on the timers tab to log all timers.  To log only some timers, check the Log check box 
on the individual timer configuration dialog. 
 

Setting Timers and Associated Commands 
 
PowerPro has a set of 26 timers.  You can configure them using the Timer dialog from the Timer 
tab on the configuration tabbed dialog.  Double click on a timer to configure it. 
 
Use the check boxes and buttons to set or clear any timer, start or stop it, and assign a label to 
the timer (the label can be displayed on the button with the timer and in the timer log.  
 
You can specify that the timer should start automatically when Windows PowerPro starts.  You 
can specify that the timer values should be saved and restored when Windows PowerPro starts 
and stops.  You can indicate that the timer should count down. 
 
You can specify that a timer should run only when a RAS connection is active or when a 
specified program is active (the foreground window). 
 
To associate a timer with a RAS (dial-up) connection, check the "Run Timer when Dialup  
Active" check box and set the timer name to the dial up name.  Windows PowerPro will 
automatically start and stop the timer according to the status of the RAS connection.  You can 
associate more than one timer with the same connection:  eg have a daily timer and a monthly 
timer.  (To create a daily/monthly timer, add an alarm which clears the timer daily/monthly). To 
have a timer which runs when any dial-up is active, set the timer label to "*any". 
 
To associate a timer with a program, check the "Run Timer Program Active" check box and set 
the timer name to the exe file name of the program to be timed (eg netscape for Netscape 
Communicator)  Windows PowerPro will arrange for the timer to be running only when the 
specified program is the foreground (active) program 
 
You can also associate a command with starting, stopping, and resetting the timer using the 
command entry controls .   
 
The reset command is used in conjunction with the Reset Hour, Minute, and Second values. 
 
For timers which count down, whenever the timer reaches zero, any associated reset command 
is executed.  If any of the Reset Hour,  Minute, or Second is greater than zero, the timer is reset 
to that value.  Otherwise, the timer is stopped.  For timers which count up, if any of the Reset 
Hour,  Minute, or Second is greater than zero, the associated command is executed whenever 
the timer reaches a multiple of the number of seconds represented by the Reset values.  For 
example, to execute a command every 5 seconds, set the reset second to 5 and the reset hour 
and minute to 0.  Or to run a script every 1 minute and 30 seconds, set the reset minute to 1, 
the reset second to 30, and the reset command to a *Script run command.  
 
You can also use the *Timer Set built-in commandto set a timer value and state. 
 



Windows PowerPro Page 46 Version 3.7 

Setting Timer Value and State 
 
Use the built-in *Timer Set command to set the value and state of one or more timers.  The 
parameters edit box of the command is structured as follows: 
 

If it starts with +, the timer is started; with - the timer is stopped, and with * the timer is 
toggled. Use of one of these characters is optional:  if omitted, the timer state is 
unchanged. 

Next, optionally, comes the single letter @ or $ if you want to add or subtract the value, 
rather than setting the value.  Omit the @ and $ to set the timer. 

Next come the single letter timer ids of the timers to be adjusted, with no blanks. 
Finally, the new timer value is indicated as three numbers:  hours, minutes, seconds, 

separated by blanks. 
 
Examples 
 
+a 0 0 0 Clear timer a and start it. 
 
+a 0 0 120 Start timer a at 120 seconds. 
 
be 0 10 20 Reset timers b and e to 10 minutes, 20 seconds; leave their running/stopped 
state unchanged. 
 
-c 1 0 0 Stop timer c and set its value to one hour. 
 
a q 2 3 0 Adds 2 hours and 3 minutes to timer q. 
 

Timer Logs 
 
You can ask Windows PowerPro to log timer events by using the Timer Log check box on the 
Timer dialog or the Log check box on the individual timer configuration. 
 
The log file will have the same name as the configuration file used for Windows PowerPro, 
except that the file extension will be .timerlog.  For example, the log file for the default 
configuration is PowerPro.timerlog.  The log is always placed in the same directory as the 
Windows PowerPro .pcf file. 
 
A log file entry will be written whenever a timer starts, stops, or is re-set.  As well, when 
Windows PowerPro shuts down, a stop timer entry will be written for any running timers.  When 
Windows PowerPro starts up, a start timer entry will be written for any automatic start timers. 
 
The logs have fixed-format records structured as follows 
Column Contents 
 1  Always blank. 
 2-8  Button of last timer command. 
 9  Always blank. 
 10  Timer id (single character). 
 11  Always blank. 



Windows PowerPro Page 47 Version 3.7 

12  Action:  "+" if timer started, "-" if timer stopped, "0" if cleared, "R" if reset 
 13  Always blank. 
 14-17  Year when event recorded. 
18  Always blank. 
19-20  Month. 
21  Always blank. 
22-23  Day. 
24  Always blank. 
25-26  Hour (military clock, ie 24 hour time) 
27  Always blank. 
28-29  Minute 
30  Always blank. 
31-32  Second 
33  Always blank. 
34-41  Total timer value in seconds. 
42  Always blank. 
43-47  Whole hours in the  timer. 
48  Always blank. 
49-50  Whole minutes in the timer. 
51  Always blank. 
52-53  Seconds in the timer. 
 
To be clear:  the timer value is shown in two different formats:  columns 29-36 show the timer 
value in seconds.  Columns 38-48 show the timer value as hours, minutes, seconds. 
 



Windows PowerPro Page 48 Version 3.7 

Media Dialog 
 
Purpose 
 
The Media dialog is used to set sounds, screen saver, and wallpaper, and to control automatic 
changes of these files by Windows PowerPro. 
 
Configuration 
To change sound, wallpaper, or screen saver information, double click on an entry from the list 
or use the Edit button. 
 
When you select an entry to be edited, you will be able to change the associated file and to 
select whether and how often PowerPro will automatically change the file.  
 
If you let PowerPro automatically change wallpaper, you can specify that when PowerPro picks 
a new wallpaper, it should first pick a random folder from the parent of the current wallpaper's 
folder, then pick a new wallpaper from within that folder.  Check this option to have a random 
folder chosen only at PowerPro startup or gray check to have a random folder chosen for each 
automatic change.  You can also specify that wallpaper changes should not occur if a full 
screen program, like a game or screen saver, is running. 
 
Windows PowerPro allows you to use jpeg files as well as bmp files as wallpaper. 
 
When Windows PowerPro changes the screen saver, you can set whether or not Windows 
PowerPro will stop any running saver and restart with the new saver using the Setup dialog. 
 

PowerPro Sounds 
 
Windows PowerPro sounds are set from the Media dialog. 
 
You must have a sound card and the appropriate drivers or the PC speaker driver to hear 
sounds in Windows. 
 
Windows PowerPro supports access to many standard Windows sounds in the Registry plus 
these sounds: 
 
Windows PowerPro Chime  Plays whenever Windows PowerPro chimes (see 

Scheduler Setup dialog) 
 
Windows PowerPro Alarm  Plays whenever Windows PowerPro alarms (see 

Scheduler Setup dialog).  Use a single asterisk to have the PC Speaker 
beep for alarms. 

 
Windows PowerPro Clip  Plays whenever Windows PowerPro captured a 

clipboard item. 



Windows PowerPro Page 49 Version 3.7 

Command Entry Controls 
 
Purpose 
Windows PowerPro uses a standard set of configuration controls to enter commands to be run 
by a button, menu item, hot key, timer, scheduler, and so on.  A command is a file or program 
you want to launch or it is a built-in command used to manipulate windows or running programs 
or to change your Windows configuration.  Built-in commands start with an asterisk (*). 
 
Configuration 
To enter a command:  type the command into the edit box, select it from drop down, press the 
program files button to select a command from the start menu, press the file browse button to 
browse for a file, or use the wizard button to select a command using wizard menus. Following 
is a description of the remaining controls: 
 
If you enter a file or program: you can use the parameters edit box to enter command 
parameters.  If you select a built-in * command, PowerPro will show dialog controls specific to 
that command. 
 
Use the Copy and Paste buttons to copy and paste commands between different sets of 
command entry controls.   
 
Use the Apply button, if present, to save the current configuration for testing; applied 
configurations will be removed if you use the cancel button.   (When you press Apply, the 
configuration is also saved in the file pproconf.apply and you can return to this configuration with 
the "Restore previous backups…" button on the Setup tab.).  Use the Test button to have 
PowerPro run the command after applying the current configuration. 
 
For file commands, you can set the starting window position (normal, minimized, maximized, 
tray minimized, hidden), the topmost status, and whether or not PowerPro switches to an 
existing window of the same program if it is already running. You can also enter the initial 
working directory for the program. 
 
You can prompt for input or insert text from calculations by using expressions.  Set the 
"expression follows" character to (say) & on  setup|advanced dialog, dialog tab chars.  The to 
prompt for input anywhere in the command or parameter, use  
&(input "title")  
 
You can also insert the results of an expression directly as text anywhere in a command or 
parameter, for example 
&(date select 4) 
would insert the 4four digit year. 
 
To use the character & without change, precede it by a single quote (‘). 
 
You can use the More Commands edit control to enter multiple commands. 
 
To play a sound each time a command is run, enter the .wav file name for the sound in the More 
Commands edit box.  You'll also want to check "Play .wav internally" on advanced dialog to 
have PowerPro play the sound (rather than the associated program for .wav). 
 

Running Multiple Commands 
 



Windows PowerPro Page 50 Version 3.7 

There are two ways to run multiple commands:   
 
Put all the commands on a command list and use *Script.  Using a script is the most general 
way to specify multiple commands and works for any number of commands which you can store 
in either a command list or a file. 
 
Or configure the commands to run from a single set of command entry controls.  This is 
convenient for a small number of commands but there is limited space.. 
 
Using the command entry controls, you can specify three or four commands in the More 
Commands edit box to enter the second and subsequent commands.    Start each command on 
a new line.  Enter command directly or use the button for a dialog. 
 
 
If you specify a file name with blanks as a command, you must put it in double quotations. 
 
You can set the work directory or format file for *Menu by preceding with the character pair !`. 
*Menu Folder c:\path\test !`cmd "*Script Run =" 
 
You can try to determine how the a program is shown by ending the line with 
*hide   to hide the window 
*min  to minimize the window 
*max  to maximize the window 
*traymin to tray minimize the window 
(these options may not work with all programs) 
For example 
c:\windows\notepad.exe edme.txt !`d:\mydir *min 
starts notepad minimized on file edme.txt with starting folder d:\mydir. 
 
Example: 
 
Command:  Notepad 
More Commands *wait 1 

*keys hello 
 
Starts notepad, waits for 1 second, then sends the "hello". 
 

PowerPro Built-In Commands 
 
Windows PowerPro comes with a set of built-in commands which let you manipulate running 
programs and control the Windows configuration.  You find the built in commands in the 
Command drop down control of the Windows PowerPro command entry controls .    
 
The command entry controls dialog automatically prompts you for the actions and information 
required for each built-in command. 
 
Following are the built-in commands: 
*Bar  Work with bars. 



Windows PowerPro Page 51 Version 3.7 

*Clip  Clipboard extender and history. 
*Configure  Access configuration dialog. 
*Desktop  Work with desktop icons, taskbar, resolution, windows. 
*Exec  Miscellaneous commands 
*File  Move, copy, delete files. 
*Format  Change look and layout of menus and bars. 
*Keys  Send keystrokes to other windows 
*Menu  Display menus built from command lists, folder contents. 
*Message  Display a message. 
*Mouse  Send a series of mouse actions to another window. 
*Screen  Start, stop, enable, disable, change the screen saver. 
*Script  Runs a list of commands. 
*Shutdown  Shutdown Windows or PowerPro 
*Timer  Start, stop, clear, reset PowerPro timers. 
*TrayIcon  Activate or hide tray icons of other programs. 
*Vdesk  Work with virtual desktops. 
*Wait  Wait for an event or a certain amount of time. 
*Wallpaper  Change the wallpaper (desktop background). 
*Window  Close, min, max, tray min, rollup, etc any window. 
 
 

Bars and the *Bar Command 
 
Purpose 
Use bars to execute commands on command lists from a toolbar.  Some features of toolbars: 

You can use left, middle, and right clicking to execute different command. 
Configure bar positions and other features by Ctrl-right clicking a bar. 
Move bars by Left dragging; resize using sizing border (position must be "Floating" and 
"Bar size to sum of buttons" must be unchecked). 
Bars can be automatically hidden 
Bars can be positioned in the caption of the active window 
Bars can be positioned as screen bars which reserve screen space like the Windows 
Taskbar. 
One bar can be positioned on the Windows Taskbar. 
Bar buttons can be pressed using the keyboard 
Bar visibility can be based on the active window 
Files can be drag/dropped on bar buttons from explorer; left drag drop runs the button 
command and right/drag drop configures a button. 

 
You can move the bar by clicking and dragging any button.  If you find that you are moving the 
bar when you do not want to, you can set use the bar setup dialog to require that ctrl be down 
for dragging a bar to move it.  In this case, you can also position bars by assigning the *Format 
Drag command to any button and then clicking and dragging that button.  After moving a fixed 
position bar, you can return to the fixed position quickly by Ctrl-right clicking bar and selecting 
"Last Fixed". 
 
 
 



Windows PowerPro Page 52 Version 3.7 

Bars are configured using command lists and their look is set using Bar Properties.  Bars can be 
shown automatically at start-up by checking "Show as Bar" on the Command Lists dialog, or 
they can be shown using the *Bar show command. 
 
The buttons on bars can come from three sources:  the entries in a command list, the files and 
folders in a folder on your disk, and the currently active windows on your system.   
 
 
You can force new rows on non-vertical bars with the *Format NewBarRow command.  You can 
start a new row and show a horizontal separator line with *Format NewBarRowLine.  Finally, you 
can insert a vertical separator line with *Format BarVerticalLine. 
 
Configuring the *Bar Command 
 
Use the following actions with *Bar: 
Show  Shows a bar. 
Hide  Hide a bar but keeps it in memory (for faster reshow). 
HideShow  Hide a bar if visible; show otherwise. 
Close  Closes a bar and removes it from memory. 
ToMouse  Temporarily moves bar to mouse.  Usually used with hotkey.  Floating 

position only. 
Keys  Readies bar to receives keys. 
SelectSubBar  Shows a subbar. 
SelectSubBarToMouse Shows a subbar at the mouse 
SelectSubBarToButton Shows a subbar aligned to a button 
 
 
For Win98/2000, when showing a hidden bar, you can specify that slide animation be used by 
preceding the bar name with one of *vertical, *horizontal, *fromtop, *frombottom, *fromleft, or 
*fromright.  For *vertical and *horizontal, Powerpro will select the direction depending on which 
half of the screen the mouse is positioned. If it is, you can also use *none to override any default 
slide animation.  For example 
For example 
 
*Bar 
Show 
*vertical myBar 
 
For *Bar Show and *Bar HideShow, you can also request that the mouse be moved to be 
position over the bar by preceding the bar name with *move, eg 
 
*Bar 
Show 
*move mycommandlist 
This can be used to prevent an autohide bar from disappearing when it is shown if the mouse is 
not over it.   
 
You can combine slide hints like *fromtop and *move using the words in either order. 
 



Windows PowerPro Page 53 Version 3.7 

You can also use *Window to access bar.  The commands hide, hideshow, show, position, and 
close can be used.  Use the bar name as the caption to access a single bar or 
use c=PowerProToolBar as the class name caption to access all bars. 

Screen Edge Positions 
 
You can position a PowerPro bar at a screen edge and have it reserve a strip screen space like 
the Windows taskbar by selecting the Top, Bottom, Right, or Left Screen Edge position on the 
Bar Properties dialog or on the Position submenu of the configuration menu shown when the 
bar is Ctrl-right clicked. 
 
There are two types of screen edge bars:  current size and full screen. 
 
For current size, set the bar orientation and size first.  PowerPro will automatically move the bar 
to the appropriate screen edge if "Move Bar to Edge for Screen Positions" is checked on 
Command List setup.  You cannot change the bar size once you select this position.  Change 
the position back to floating if you want to change the size.  PowerPro will try to set the reserved 
desktop space to be just large enough to accommodate the bar.  But you can fine tune the size 
of the reserved space using the vertical (for top/bottom edge) or horizontal (for right/left edge) 
offsets on the Bar Properties dialog. 
 
For full screen, PowerPro will move the bar to the selected edge and set the bar height or width 
to the full screen.  You can change the size of the other dimension of the bar by dragging the 
bar border. 
 
If the bar is not an autohide bar, it will reserve screen space.  In this case, the Windows system 
will automatically move desktop icons and windows out of the area reserved for the bar. 
 
 

Showing Other Bars when you Click a Main Bar 
 
You can configure a bar to show other bars at your mouse when you click a button.  For  an 
example, try the BarShowsBars configuration which you should find installed in your Powerpro 
folder and which you can access by ctrl-right clicking a bar, selecting Change Configuration 
from the resulting menu, and then selecting BarShowBars from the resulting submenu. 
 
Click any button.  Another bar will appear with commands to be launched. 
 
This effect is configured by creating a separate command list for the bars which appear when 
you click the main bar.  Each of these other bars are autohide bars with "Auto Show as Bar" 
checked. 
 
Ctrl-right click the bar and note the configuration of Bar command list.  The Saver buttons shows 
the command list ShowOne at the mouse.  The other buttons use the *Bar 
SelectSubbarToButton command to show a subbar of the ShowBar command list aligned with 
the clicked button.  The advantage of the subbar approach is the only one command list (beside 
the main bar) needs to be maintained. 
 
Note how the ShowAll and Showone bars use the vertical slide setting on the Command List 
Properties to control slide animation (win98/2000 only). 
 



Windows PowerPro Page 54 Version 3.7 

To show the vertical bars when the mouse hovers of the main bar, select Properties for 
Command List bar and check hover clicks. 
 
To return to your standard configuration, ctrl-right click bar, select Change Configuration menu, 
submenu item pproconf. 
 
 

Using Subbars to Display Different Parts of Bars 
 
Subbars let you can display some buttons on a bar and hide others.  You can use a *Bar 
command or the virtual desktop name to indicate which parts of the bar should be displayed.   
 
Configuration 
 
There are two steps to creating these subbars. 
 
First, you put a *Format StartSubBar at the start of each subbar and a *Format EndSubBar at 
the end.  These must be Left commands.  Use the list item name of  the *FormatStart SubBar to 
set the name of the subbar.    Buttons which are not within subbars are always displayed.  (You 
cannot nest subbars.  You can repeat the same name on different *FormatSubBar commands.) 
 
Second, you use the command  
*Bar  
SelectSubBar  
xxx @PartBar 
to show the subbar called PartBar on bar xxx.  All other subbars are hidden.  Note that you have 
to specify the bar name, then an @ sign, then the subbar name.  You can omit the bar name 
(but not the @) if  the *Bar SelectSubBar command is on the same bar as the *Format SubBar. 
 
There are many ways to configure the command:  you could put the *Bar SelectSubBar 
command on an always-shown button on bar xxx, or on another bar, or on a hot key, etc. 
 
Buttons which are not within subbars are always displayed.  You cannot nest subbars.  You can 
repeat the same name on different *FormatSubBar commands (ie the subbar does not have to 
be a contiguous set of buttons). 
 
When a bar is first displayed, the first subbar in the command list is shown. 
 
In addition to using the SelectSubBar command, you can also show a subbar when you switch 
to a virtual desktop.  Give the subbar the same name as the virtual desktop.  Check "Show 
subbar of same name as vdesk" on virtual desktop setup. 
 
Example 
 
Suppose a bar called mybar is configured as follows (middle button omitted for clarity): 
 

Item Name Left  Right  
Select *Bar SelectSubBar mybar @edit *Bar SelectSubBar @misc 



Windows PowerPro Page 55 Version 3.7 

edit *Format StartSubBar  
edit1 c:\windows\notepad.exe  
edit2 c:\windows\wordpad.exe  
 *Format EndSubBar  
all c:\windows\explorer.exe  
misc *Format StartSubBar  
m1 c:\windows\calc.exe  
m2 c:\windows\paint.exe  
 *Format EndSubBar  

 
Then left clicking the select button would show the edit1 and edit2 buttons; right clicking select 
shows m1 and m2 buttons.  The all and select buttons would always be shown. 
 

The Section/Subbar Approach to Configuration 
 
Some skins configurations require a section/subbar approach to the pproconf.pcf file.  This type 
of bar has a set of (so called) section buttons to select a subbars and each subbar consists of a 
set of launch items.  For example, the LaunchKaos program and its skins use this approach.  
The idea is to use a subbar to group launch items with a common purpose, eg editors or 
internet, and use the subbar selection button to select that category.  In general the list of items 
in a command list for this type of bar will look like this: 
 
Editors *Bar   SelectSubbar @editors_ 
Internet *Bar   SelectSubbar @Internet_ 
Utilities *Bar   SelectSubbar @Utilities_ 
 
Editors_ *Format  StartSubbar 
 items for editors subbar here 
  *Format  EndSubbar 
 
Internet_ *Format  StartSubbar 
 items for internet subbar here 
  *Format  EndSubbar 
 
Utilities_ *Format  StartSubbar 
 items for utilities subbar here 
  *Format  EndSubbar 
 
For convenience, the subbar name in the above example has been chosen to be the bar 
category label followed by an underline. 
 
You will likely want to check "Show *Bar SelectSubbar as pressed" on Command List|setup 
which will cause PowerPro to show the selector button corresponding as the visible subbar as 
pressed. 
 
You can quickly create a subbar and a button for selecting that subbar from the command list 
configuration dialog by clicking Quick Add, or right clicking the list box and selecting Quick Add, 



Windows PowerPro Page 56 Version 3.7 

and then selecting "Selector and new subbar" from the menu.  The selector is added after any 
currently selected button in the list, and the subbar is added to the end of the list. 
 
For a sample of such a bar, Ctrl-right click on any bar, select "Change configuration" menu item, 
and then select "subbars" from the resulting submenu..  If you have installed the sample skins, 
you can see how Skin Sample Kaos and Skin Sample Newbie display this pcf configuration. 
 
This approach to configuration can take a lot of screen space.  If you prefer to use less screen 
space, you may wish to replace the *Bar selector buttons with a button or hot key which displays 
a menu of *Bar Selector commands. 
 
 

Drag and Drop onto the PowerPro Button Bar 
 
You can left or right drag and drop a set of one or more file names from the Explorer/File 
Manager or Explorer onto the Windows PowerPro bar to start a command with the file names as 
the parameters or to configure a new or existing button. 
 
Left drag and drop starts a command with dropped file(s) as the parameter.  Right-
drag/dropping file(s) onto the bar activates a menu allowing you to select the button to receive 
the file or to be configured or to quickly add a new button using the dropped file as the left 
command.  
 
Sometimes you want to drag and drop files in the middle of the command line.  To do so, put the 
character "|" at the point where you want the dropped files to be placed.  The "|" will be replaced 
by the dropped files when the command is run and the text following the "|" will follow the 
dropped files.  Do not forget a space after the "|", if needed. 
 
You can drag and drop files to Active Buttons, and they will be passed to the executing program 
(if the program does not accept dropped files, you will hear an error beep). 
 
Windows PowerPro always attempts to start a new instance of a command when a file is 
dropped on a button. 
 

Using the keyboard to access the button bar 
 
You can use the keyboard to access the commands on a Windows PowerPro button bar. 
 
First, you need a way to activate the bar from the keyboard.  Set a hot key to the following 
command: 
 
Command *Bar 
Action  Keys 
Parameter name of command list for bar 
 
When you activate the hot key, the mouse cursor will be moved to the bar and the bar will be 
ready to receive any of the following keystrokes: 
 
L  activate left command of current button  (you can also use Enter) 



Windows PowerPro Page 57 Version 3.7 

M  activate middle command of current button 
R  activate right command of current button 
 
left arrow move to next button 
right arrow move to previous button 
end  move to last button 
home  move to first button 
up arrow move to next row in multi-row bar 
down arrow move to previous row in multi-row bar 
Ctrl+Enter show configuration dialog 
Esc  return the mouse cursor to position preceding *Bar Keys command 
 
 
Using *Bar Format to Change Bar Format 
 
Use *Bar format to change the background, autohide interval, or position of a bar.  
 
To configure the command, select *Bar command, Format action, and set the command list 
drop down to the bar to be accessed.  Then enter format keywords to specify the new bar 
attributes.  Use the button at the right of the format keywords dialog to select the keywords.  The 
keywords are: 
 
back "file.bmp": changes the background to file.bmp or use back none to remove background; 
put file name in double quotes if it contains blanks. 
back2 "file.bmp": changes the background to file.bmp or use back none to remove background; 
put file path in blanks if it contains blanks. 
 
Use both back and back2 to alternative between two backgrounds each time the command is 
executed. 
 
autohide n:  changes the interval before automatic hiding to the number n.  Use 0 for no 
autohide.  Use -n to alternate between no autohide and autohide after n milliseconds.  For 
example, autohide -1000 alternatives between no autohide and hiding after 1000 milliseconds. 
 
position n.  Set the bar position to the nth position.  Use the menu accessible from the button 
beside the keyword edit box to set the number.  Use a negative number to alternate between 
floating position and the nth position. 
 
refresh  Closes and reopens bar.  Could be used, for example, to manually refresh folder 
buttons. 
 
The resulting new bar configuration is always saved in the .pcf file. 
 
Example: 
 
*Bar Format xxx 
back2 "*" back none position -1 
 
alternates bar xxx between wallpaper and no background and between floating and locked 
position. 

 

Adding a Button 
 



Windows PowerPro Page 58 Version 3.7 

1. Ctrl-right click bar and select configure. 
2. Select command lists tab. 
3. Select bar name from drop down. 
4. Select current item to precede or to follow new button. 
5. Press Add New After or Add New Before. 
6. Enter new name, icon, command on edit item dialog. 
7. Press OK. 
8. Press OK to close configure. 
9. If "Bar size to sum of buttons" is unchecked, resize bar using sizing border to see new button. 
 

Changing a Button 
 
1. Ctrl-right click bar and select configure. 
2. Select command lists tab. 
3. Select bar name from drop down. 
4. Double click on item to be changed. 
5. Enter new name, icon, command on edit item dialog. 
6. Press OK. 
7. Press OK to close configure. 
8. If "Bar size to sum of buttons" is unchecked, resize bar using sizing border to see new button 
if needed. 
 
Tip:  Press and hold a button to quickly configure it. 

Deleting a Button 
 
1. Ctrl-right click bar and select configure. 
2. Select command lists tab. 
3. Select bar name from drop down. 
4. Click item to be deleted. 
5. Click delete button or key Del. 
 

Moving Bar 
 
1. Ctrl-right click bar, select look submenu, make sure Floating is selected. 
2. Left click anywhere on bar and drag to new position (you will also need to hold down Ctrl if 
this option is set on Command List Setup dialog). 
 
Tip:  You can assign *Format Drag command to any button; then click and drag on that button to 
move bar even if you have set Command List setup to require Ctrl key. 
Tip:  Use submenu of Floating entry to quickly align bar on screen. 
 

Positioning the Bar 
 
Floating Position:  Bar can be dragged by ctrl-left click.  Bar can be resized if sizing border is 
checked and "Bar size to sum of buttons" is unchecked. 
 



Windows PowerPro Page 59 Version 3.7 

Locked:  Bar cannot be moved or resized. 
 
Caption/Above/Below/Left/Right:  Bar moved to caption or positioned near active window.  Size 
the bar before selecting this option. Bar can be moved by dragging. 
 
Screen Bar:  If not autohide, bar reserves screen space like Windows Taskbar. There are two 
types of screen edge bars:  current size and full screen. 
For current size, set the bar orientation and size first.  PowerPro will automatically move the bar 
to the appropriate screen edge if "Move Bar to Edge for Screen Positions" is checked on 
Command List setup.  You cannot change the bar size once you select this position.  Change 
the position back to floating if you want to change the size. 
For full screen, PowerPro will move the bar to the selected edge and set the bar height or width 
to the full screen.  You can change the size of the other dimension of the bar by dragging the 
bar border. 
 
Task Bar:  On bar sits on Windows Taskbar.   
 
Fixed:  Bar will stay in same position independent of screen resolution. 
 
You can move the bar by clicking and dragging any button.  If you find that you are moving the 
bar when you do not want to, you can set use the bar setup dialog to require that ctrl be down 
for dragging a bar to move it. 
 

Creating an Autohide Bar 
 
1. Ctrl-right click bar and select configure. 
2. Select command lists tab. 
3. Select bar name from drop down. 
4. Press Properties button. 
5. Select autohide delay from "Hide After" drop down. 
6. Select screen edge to bump from "Show if Bump" drop down. 
7. Press OK to save properties and OK again to close configure. 
 
Tip:  If you cannot make a bar appear, use ctrl-alt-del to shut down PowerPro and restart.  Bars 
will appear at start up.  Or execute Pproconf.exe program to reconfigure. 
 
Tip:  You can control the amount of time the cursor must be held at edge of bar with Key/Mouse 
tab, Setup button, Screen edge delay setting. 
 
Tip:  If you prefer another technique for showing the bar, configure a hot key or button or menu 
(from another bar) with the *Bar Show command. 
 

Creating a New Bar 
 
1. Ctrl-right click bar and select configure. 
2. Select command lists tab. 
3. Press New List and enter name for bar’s command list then press OK. 
4. Add items buttons for bar using Add New After or Add New Before. 



Windows PowerPro Page 60 Version 3.7 

5. Press Properties and set look for bar: icons, maximum text label, tool tips, etc. 
6. Check "Show as Bar on Command Lists tab to automatically show the bar at PowerPro start.  

Or use the *Bar Show command to show the bar when desired. 
7. Press Apply to preview (if Show as Bar checked). 
8. Press OK to save. 
 

Removing a Bar 
 
1. Ctrl-right click bar and select configure. 
2. Select command lists tab and select bar to be removed from drop down. 
3. To stop showing bar while keeping its configuration: uncheck Show as bar.  Ctrl-right click bar 

and select Close bar 
4. To remove bar and its configuration information:  Press Delete List and then press OK to 

confirm. 
5. Press OK to save. 
 

Bar Look 
 
Flat:  If checked, buttons are shown flush with bar unless mouse cursor is over them.  To keep 
buttons flat even with mouse cursor is over them, gray-check flag on Properties for bar's 
command list. 
 
Topmost:  Bar is shown on top of all other windows. 
 
3D/Sizing Frame:  a 3D border is drawn around the bar.  If the Position is floating and "Bar size 
is sum of all buttons" is unchecked, then left clicking on this border and dragging will change the 
shape and size of the bar.  The label "Sizing Frame" will appeal only if you can use the frame for 
sizing; otherwise it will be called 3D Frame. 
 
Border:  a black border is drawn around the bar.   
 
Text under icons:  text is drawn under icons. 
 
Buttons same size:  button width is set by width of first button. 
 
Vertical:  Buttons are aligned beneath each other. 
 
Right icons  Iocns are shown to the right of button text. 
 
Center text:  center text label on button. 
 
Bar size from sum of buttons:  If checked, the bar size is set by PowerPro and the bar cannot be 
resized with the sizing border.  The size will be changed if there are active buttons as the 
number of active tasks changes.  It will be one row or one column unless *Format NewBarRow 
is used to force new rows on non-vertical bars.  

Positioning PowerPro Bars in or beside the Foreground Window 
 



Windows PowerPro Page 61 Version 3.7 

You can position Windows PowerPro bars at the left, middle, or right of the foreground window 
caption or to the left, right, below or above the foreground window by selecting such a position 
as the position in the Bar.  You can also specify an offset for the bar from the base position with 
this dialog. 
 
Use Default Menu and Bar  to avoid putting Windows PowerPro bars in captions of or beside 
dialog boxes.  
 
When there is no active window to use for the position will move to a default position on your 
desktop which you have previously determined by ctrl-left dragging the bar to that position.  Or, 
you can specify that the bar be hidden in this circumstance by checking the appropriate check 
box on the Use Default Menu and Bar dialog. 
 
If you want to make the window visible only if certain windows are active, use *Format Context 
at the start of the bar command list.  You can have several such bars, each positioned in the 
caption of or beside windows but only visible if the specified *Format Context windows are 
active. 
 
You can move bars positioned in or beside the foreground window by dragging them.  They will 
be repositioned when a new window becomes active. 



Windows PowerPro Page 62 Version 3.7 

Clipboard Manipulation, Tracking and Copying 
 
Purpose 
The *Clip command is used to work with the clipboard.  Windows PowerPro has commands to 
copy text or file to the clipboard, to copy the clipboard to a file, and to clear the clipboard. 
 
Furthermore, Windows PowerPro has a clipboard history function:  it can track text as you put it 
to the clipboard and can subsequently display a list of such text items on a menu.  If you select 
an item from this menu, the selected item is recopied to the clipboard and optionally pasted.   
 
*Clip Actions 
 
Menu  Show menu ; select an entry to put on clipboard. 
MenuPaste Show menu of recently captured clips history; select an entry to put on clipboard 

and then automatically paste selected entry using Ctrl-V. 
MenuIPaste Show menu then paste selected entry using Ctrl-Ins. 
Delete  Delete selected entry from clipboard history. 
File:  Copy file to clipboard. 
FilePaste Copy file to clipboard then paste using Ctrl-V. 
FileIPaste Copy file to clipboard then paste using Ctrl-Ins  
CopyThenToFile Send Ctrl-C then copy clipboard to file.  See Manual Copy below for 

more  
ToFile Copy clipboard to text file  
ToFileAppend Appendclipboard to text file.  
ClearClip Clears clip board. 
ClearRecent Clear recent list of captured clips. 
ShortDate Put date on clipboard in short format.  (put *Keys ^v in More Commands to 

paste). 
LongDate Put date on clipboard in long format. 
Time  Put time on clipboard. 
Text  Put entered text on clipboard. 
TextAppend  Append following text to clipboard.  If no text, newline appended. 
 
TextPaste Put entered text on clipboard and then automatically paste with Ctrl-V. 
Copy  Sends Ctrl-C to foreground window for copy. 
Cut  Sends Ctrl-X to foreground window for cut. 
Paste  Sends Ctrl-V to foreground window for paste. 
Capture Turn capture off, on, or reverse current state  You can follow on by a folder 
name, say c:\path, to start capturing clips in folder c:\path.  You can replace foldername by word 
refresh to have PowerPro reset its internal memory copy of clip files and dates; do this if you 
insert a new text file into the clip folder without using clip capture(ie use *Clip capture on 
refresh). 
 
 
TextPaste will often be faster then *Keys for long text.   
 
Manual Copy to Clipboard 
 



Windows PowerPro Page 63 Version 3.7 

You can manually copy selected text to the clipboard and then to a specified file with 
Command *Clip 
Parameter CopyThenToFile filepath 
Windows PowerPro will send the keystroke Ctrl-c to copy selected text to the clipboard, and 
then will copy the clipboard text to the filepath.  Provide the full filepath with the extension . 
PowerPro will always copy plain text format. 
 
To implement multiple clipboards, create a set of hot key pairs with a manual copy attached to 
one hot key and a filepaste and the same file name assigned to the other hot key. 
 

Clipboard History Tracking 
 
To enable automatic tracking of plain text as you paste it to the clipboard, you must check 
"Keep clips" on the GUI Control dialog.  When this is done, Windows PowerPro will 
automatically track the most recent items pasted to the clipboard.  Gray check to capture rich 
text format as well as plain text. 
 
You can also ask Windows PowerPro to automatically copy selected items to subfolders of your 
clip folder with filter strings. 
 
If you set a non-zero value for "Milliseconds mouse hovers over *Menu Folder" on advanced 
setup dialog, PowerPro will show the first few lines of the stored clip as a tool tip for the *Clip 
Menu display. 
 
You can play a sound file each time an item is captured by setting the PowerPro Clip sound on 
the sound tab. You can run a command list called "ClipCaptured" by checking the "Run 
ClipCaptured" checkbox. 

 
You can prefix the clip name with a time stamp hhmmss by checking this option on the GUI 
control tab; this will ensure that clips starting with the same text have a different clip name and 
do not overwrite each other. 
 
To conserve memory, PowerPro normally only captures clips less than 63K in size.  You can 
increase this to 250K by checking "Large Clips" and to 1000K by gray checking "Large Clips" on 
the GUI Control dialog. 
 
Use the *Clip MenuPaste command to display a menu of recent clips that have been tracked; 
selecting one puts the clip on the clipboard and pastes it to the current program.  If you check 
"Show tool tips for *Men Folder and *Clip Menu" on Command List setup, PowerPro will show 
the first few lines of the stored clip as a tool tip for the *Clip Menu display. 
 
Further Information 
Clipboard plain text is actually stored in a .txt file in the clip subfolder of your main Windows 
PowerPro folder.  You can edit it with your standard editor.  You can access that editor from the 
*Clip menu by right-clicking the menu item.  Clipped rich format text is stored in .clprtf files which 
only Windows PowerPro can read. 
 
Using Explorer, you can create subfolders of the clip folder and use these subfolders to 
permanently store text snippets you want to access.  Create the snippets by copying them from 
the main clip folder, by using clip filters, or by entering them directly by saving files from 



Windows PowerPro Page 64 Version 3.7 

Notepad or any other editor which can save plain .txt files.  You can then access these snippets 
from the *Clip menu.   
 
You can access only the clips in one folder xxx with 
Command *Clip 
Parameter menu xxx 
You can show only the automatically tracked text items with:  
Command *Clip 
Parameter menu active 
 
Clip Menu Layout 
 
The *Clip menu command is actually implemented by a *Menu Folder similar to the following: 
Command *Menu Folder  
Parameter c:\program files\PowerPro\clip 
Format noext noicons sorttime folderstart folderdot cmd "*Clip filepaste" 
If you would like a different display of the clip menu, create your own *Menu Folder command 
using the above as a model.  Note the cmd field which runs a *Clip filepaste on the selected  
item. 

Clip Filters 
 
You have Windows PowerPro place captured clipboard items in subfolders of the clip folder by 
entering filter strings in the filter edit box on the GUI Control dialog.  Filter strings take this form 
String=subfolder 
String is xxx*, *xxx, or *xxx* to match xxx at start, end, or middle of clipped item; subfolder is the 
name of the subfolder of the clip folder in your Windows PowerPro directory where you want to 
put any item matching the String. For example 
*.zip="zip files" 
puts any captured item ending in .zip into the subfolder "zip files".  Note that you must put the 
subfolder name in double quotes if it contains blanks. 
 
You can separate multiple matching strings by commas: 
*.gif,*.jpg,*.jpeg=Pictures 
puts strings ending in .jpg, .jpeg, or .gif into the pictures folder.  Avoid blanks in the matching 
String. 
 
The strings in the clip filter edit box on the GUI Control dialog are processed in sequence: 
try*=tryfiles *.zip="zip files" 
would put any strings starting with try in tryfiles and then any other strings ending in .zip in "zip 
files". 
 
If the captured item is longer than 250 characters, only the first and last 125 characters are 
used when checking filter strings. 
 
You can control whether or not items which match a filter are also placed in the active list with a 
checkbox on the GUI Control dialog. 



Windows PowerPro Page 65 Version 3.7 

 

Desktop Command 
 
Use the *Desktop command to control various aspects of your desktop layout.  Use these action 
keywords: 
HideIcons  Hides all icons on desktop 
ShowIcons  Show desktop icons. 
HideShowIcons Hides icons if visible; shows them if hidden. 
HideTaskBar Hides all TaskBar on desktop 
ShowTaskBar Show desktop TaskBar. 
ShowTaskBarautohide Shows taskbar; re-hides when mouse is moved off taskbar and taskbar 

is not foreground window.  Assign this command to screen bump hot key 
to show autohide taskbar but prevent inadvertent shows by movements 
near screen bottom when taskbar is hidden.  You may also need 
*Desktop hidetaskbar as startup scheduled event. 

HideShowTaskBar Hides TaskBar if visible; shows them if hidden. 
HideShowWindows Hides all desktop windows; show them when next executed. 
MinShowWindows Minimizes all desktop windows; show them when next executed. 
SaveIcons Save desktop icon positions 
RestoreIcons Restore desktop icon positions 
SaveIconsGrid Align desktop icon positions to a grid and then save them. 
Resolution Change resolution 
TransIconText Makes transparent background for desktop icon text; use keyword auto 

to reset transparency when background changes 
IconTextColor Set color of text under desktop icons; use keyword auto with 

TransIconText function to reset color when background changes  
SetWorkArea Sets size of work area on desktop screen:  that is the size of maximized 

window.  Specify four numbers left, top, bottom, right.  Relies on system 
routine built into Windows which controls effect of command. 

Saving and Restoring Desktop Icon Positions 
 
Use the Built-in commands *Desktop SaveIcons,  *Desktop RestoreIcons, and *Desktop 
SaveIconsGrid save/restore the relative positions of desktop icons and to align icons according 
to a grid.  Assign the commands to a button or menu, and execute them to save/restore your 
desktop icons positions.  
 
Positions are stored as numbers which are independent of screen resolution.  If you save 
positions under one resolution and restore under another, the relative positions of icons on your 
physical screen will not change. 
 
You can align icons to a grid before saving  by using SaveIconsGrid n1 n2 in the parameters 
box of the *Desktop Icon commands, where n1 is horizontal grid spacing and n2 is vertical grid 
spacing.  The top left corners of icons are moved to the nearest grid point.  For example: 
Command: *Desktop SaveIconsGrid 
Parameter 30 20 
aligns icons so that horizontal pixel position is a multiple of 30 and vertical is a multiple of 20. 
 
You can specify the name of the file used to save/restore the icons by putting the file name in 
the Parameters edit box (after the grid numbers, if you are using them).  Do not specify a path; 



Windows PowerPro Page 66 Version 3.7 

all files must be in the Windows PowerPro folder.  Use the extension .iconpos.  This allows 
many different configurations to be kept. 
 
You can use the advanced dialog to specify that PowerPro should always restore saved 
desktop icon positions when the screen resolution is changed; however, this option may cause 
Explorer aborts on some systems. 
 

 

Changing Screen Display Resolution 
 
You can change the display resolution, color depth, and refresh frequency (NT only) with the 
built-in *Desktop Resolution command. 
 
If you use this command with nothing in the parameters edit box, Windows PowerPro will 
present a menu of valid screen resolutions to choose from.  Select one to change and save the 
new setting in the registry (hold down shift while selecting to avoid saving the new setting).  For 
Win 95, if you change the color depth or refresh frequency, you will be asked if you want to 
restart windows for the settings to take effect. 
 
To set a resolution without the menu, specify: 
 
Command:  *Desktop Resolution 
Parameters:  x1 y1 depth freq 
 
where x1 gives the new horizontal pixels,  y1 gives the new vertical pixels, depth gives the new 
color depth (4, 8, 16, 24), and freq gives the new refresh frequency (NT only). Depth and freq 
are optional.  For example, to change to 1024 x 768: 
 
Command:  *Desktop Resolution 
Parameters:  1024 768 
 
You can alternate between two settings by the following command format: 
 
Command:  *Desktop Resolution 
Parameters:  x1 y1 x2 y2 
 
When this command is executed, the display resolution is set to x1 x y1 unless it is already that 
value; in this case it is set to x2 x y2. 
 
Normally, the new settings are saved in the Registry; if you do no want this to happen put the 
word nosave after the settings in the parameter field. 
 



Windows PowerPro Page 67 Version 3.7 

 

Using *Exec 
 
Use the *Exec command to access various functions; the *Exec keywords are: 
BrowseRun:  Shows a file open dialog; the select file is immediately executed. 
CommandLine  Shows a tiny command line to enter a command to run. 
HideWindow  Shows a dialog allowing you to pick a window to hide. 
ContextMenu  Show right click menu of window under mouse; usually followed by 

*Keys {to menu}… to select entry from menu.  Or you can specify a file or folder 
to get the context menu for that file.  Finally, you can specify an object from 
Desktop or My Computer virtual folders,  such as a local drive, to get its context 
menu.  You must use the same name that appears for the object when you view 
it with Explorer 

Autoscroll  Starts automatic scrolling. 
ScrollwithMouse  Starts manual scrolling.ScrollWindow  Scroll window 

under mouse. 
ClearRecent  Clears recent command folder on Start Menu. 
AutoPress  Used to learn new types of windows for mouse stop/press 
WindowInfo  Shows/hides a small window showing mouse position and window size. 
Disable  Disables PowerPro until mouse moved over a bar or hot key used. 
Mute   Mutes sounds; run again to reverse. 
RestoreLastMin  Restores last minimized window. 
Alarms  Can suspend or re-activate checks for scheduled programs. 
ClearRecentExcplorer Clears list of recent explorer folders shown my *Menu Explorer. 
ToFile  Writes a line of text to a log file. 
Setenv  Set environment variable. 
Prompt  Sets a flag according to a prompt 
Dos   Starts Dos, runs a command line, restarts Windows (not for NT). 
VolumeAll  Set volume for all playback; enter number 0 (mute) to 255 (loudest). Use 

+ or - in front of number to adjust relative to current setting. 
VolumeWav  Set .wav volume; enter number 0 (mute) to 15 (loudest). Use + or - in 

front of number to adjust relative to current setting. 
RefreshEnvironment Refreshes all environment variables from registry (NT only). 
Calendar  Shows a calendar.  Use mouse or arrow keys to navigate.  Unavailable 

on early Win95 versions unless IE3 or later has been installed. 
CalcCalendar Shows two dates/calendars along with day number, week number, and 

differences between dates.  Changing any value updates the others.  You can 
use positive or negative numbers for differences.  Use mouse or arrow keys to 
change dates.  Or click on appropriate field of date and type new year, day 
number, or month number.  Unavailable on early Win95 versions unless IE3 or 
later has been installed. 

Monitor  Can suspend or re-activate repeated running of monitor command list as 
set on Command List Setup. 

HotKey  Can suspend or re-activate hotkeys.  Note:  even if you suspend hot 
keys, a hot key which runs this command will still work so you can tie *Exec 
HotKey reverse to a hot key to control whether hotkeys are enabled. You can 
also specify a list of blank-separated  hot key numbers after on/off/reverse  to 
act only on those hot keys.  The hot key number can be found by exporting the 
hot keys to a file with setup|advanced|export text; it is the first number. 



Windows PowerPro Page 68 Version 3.7 

EmptyRecycleBin Empty recycle bin.  Use checkboxes to control confirmation and whether 
sound is played and animation shown. Unavailable on early Win95 versions 
unless IE4 or later has been installed. 

Explorer  shows the contents of the specified folder in explorer; both file folders 
and special folders like control panel may be used.  Use find button to browse 
for folder when configuring. Use * for current working folder of active program. 

Explorer2  shows the contents of the specified folder in explorer in 2-pane window; 
both file folders and special folders like control panel may be used.  Use find 
button to browse for folder when configuring.  Use * for current working folder of 
active program. 

LogKeys  Log keystrokes to file. 
NewFolder  Creates a new file folder. 
FindFiles shows the Windows find files dialog.  You can use the edit box to enter a single 

starting folder.  Or use *Keys in More Commands to initialize dialog fields; for 
example, *Keys %lc:\path;d:\p2%n*.txt sets Look In to c:\path;d:\p2 and Named 
to *.txt. 

FindComputer  Shows find computer dialog. 
Print  Print file using associated program. 
CD use command play, next, previous, eject to play audio CD. 
SchedulerAdd Adds a new scheduled event.  Specify date, time, and either a command or text 

(which will be set as a *Message event).  The date and time must be each be 
one number, separated by a blank (no blanks or colons or slashes within date 
or time).  The date can be yyyymmdd or a number less than 1000 to specify that 
number of days from now (zero for today).  The time can be hhmm to specify 
the time using 24 hour clock or +hhmm to specify that number of hours and 
minutes from now.  For example *Exec SchedulerAdd 20021225 0900 Merry 
Christmas.  For example, *Exec SchedulerAdd 0 +100 "c:\program 
files\myprog\mprogra.exe" runs myprog one hour from now. 

 
ChangeConfiguration changes to configuration stored in new pcf file; the new file path can be 
entered in the command or it will be prompted for if no path is provided. 

Suspending Alarms 
 
You can suspend ringing of alarms by executing the following command (eg though a button or 
menu item): 
 
Command *Exec  
Action  Alarms 
Parameter: off 
 
To resume alarm ringing, use  
 
Command *Exec  
Action  Alarms 
Parameter: on 
 
To reverse the status, ie suspend alarm ringing if it is active, or resume alarm ringing if it is 
suspended, use 
 
Command *Exec 



Windows PowerPro Page 69 Version 3.7 

Action  Alarms 
Parameter: toggle 
When alarm ringing is resumed, alarms which would have rung when alarm ringing was 
suspended are rung or discarded according to the setting of "Ring Missed Alarms" on the Setup 
configuration dialog. 
 

Tiny Type and Run Dialog 
 
Purpose 
If you want an easily accessible but unobtrusive command line, use the built-in command *Exec 
CommandLine.  It creates a small window consisting of a single drop down edit box.  You can 
type any command into this box and press enter to have the command executed. Or, if you 
have a three-button mouse, you can execute the command by middle-clicking on the edit box. 
 
Usage 
You can select the command from the drop down which stores the last 25 commands entered. 
 
Put the *Exec CommandLine command as a Windows PowerPro start up alarm if you want the 
run box to appear when Windows PowerPro starts. 
 
If your command file name contains blanks, you must surround it by double quotation marks. 
 
With NT4/Win98, or if you have installed IE3 or later (even if you no longer use it), you may be 
able to type World Wide Web URLs directly into a run box and have them executed.  Try this to 
see if you have this feature.  If not, then right click on the run box and select "Check for URL"; in 
this case, Windows PowerPro will send any command line starting with www. or containing //: 
to a running browser to be used as a URL (the browser must be Netscape or IE and must 
already be running). 
 
You can execute a "Dos" command by specifying *Dos immediately followed by the command 
line.  The command is written to file ppro.bat file (.cmd in NT)  in the PowerPro folder and then 
this .bat file is executed.  Use explorer to set the properties of this .bat file to change its 
configuration (eg full screen versus window).  Precend the Dos command by *hide to run it in a 
hidden window. For *Dos commands, if you use *Script Assign to set the variable 
CurrentDirectory to a drive:folder, PowerPro will do a cd /d to the directory in that variable 
before running the command. 
 
You can create your own special processing of the command line by creating a command list 
script called HookCommandLine.  When this script exists, PowerPro executes it just before 
running the command line.  The variable x0 will be set for the script to the contents of the 
command line, and whatever the script sets x0 to will be executed.  If x0 is set to "", nothing is 
executed.  For example, the script could scan the command line in x0 and handle command 
aliases. 
 
 
Configuration 
After you first start the Tiny Run Box, drag and resize its width to desired dimensions.  Windows 
PowerPro will remember the location and width the next time the run box is started. 
 

You can further configure the run box by right-clicking on the edit box (not the caption). You 
can then: 



Windows PowerPro Page 70 Version 3.7 

specify that the run box should shrink when inactive (see below for details) 
specify that the run box should close when inactive for ten seconds 
specify that the run box should/should not be always on top 
specify that all commands expect those starting with "win " should be prefixed by *dos 

(useful if you use the run box mainly for dos command line commands) 
 or specify that all commands expect those starting with "win " should be prefixed by the ksh 

shell prefix *dos ksh -L -c; you can change the shell prefix with the shellprefix internal 
option 

specify whether or not the caption and resizing window frame should be shown 
pick a background color for the window 
browse for a file to execute 
execute the command in the run box  
save the current size to be used as the shrunk size 
specify whether the run command should switch to another instance, if it is active 
specify whether Windows PowerPro should try to interpret the command as a URL to send 

to a running browser 
 
To keep the run box out of the way when not in use, you can specify that it should shrink when 
not active.  Follow this sequence of steps in the order given: 
 1. Set the caption on. 
 2. Move to position so that left of window is at desired location. 
 3. Resize the width to desired shrunk width. 
 4. Select "save shrunk width" from configuration menu. 
 5. Resize to desired large width. 
 6. Select "shrink if inactive" from configuration menu. 
 7. Turn caption off, if desired. 
 
If you use the keyboard extensively, you may want to configure a hot key to activate the tiny run 
box (by setting the hot key command to the Tiny Run Box command). 
 

Logging Keystrokes 
 
You can log keystrokes into a file with *Exec LogKeys.   
 
To start logging keys to file c:\path\mylog.txt, use 
*Exec 
Logkeys 
c:\path\mylog.txt 
 
To stop logging, set the file name blank.  To switch between logging and non logging, put an = 
in front of the file name: 
*Exec 
Logkeys 
=c:\path\mylog.txt 
will start logging the first time the command is run, stop it the next time, and so on. 
 



Windows PowerPro Page 71 Version 3.7 

You can write a heading to the logging file by checking that option on the *Exec Logkeys 
configuration.  You can also write a heading using *Exec ToFile with filename set to log to refer 
to the currently open logging file. 
 
If you omit the path, the key logging file is assumed to be in the same folder as the PowerPro 
configuration file (.pcf). 
 
The configuration checkbox option "All Keys" lets you determine how invisible keys like Alt and 
PageDown are handled.  If All Keys is not checked, then only visible keys, spaces, tabs, and 
Enters are written to the file.  If All Keys is checked, then all keystrokes are written to the file 
using the *Keys notation for special keys, eg {alt} or {pgdn}.  In addition, {alt}, {ctrl}, {shift}, and 
{apps}  will be written twice:  once for key press and again for key release.  Files logged with "All 
Keys" checked can be played back using *Keys {from …}. 
 
You can use the *Info keyword logkey to display an X on a button label if logging is active or the 
keyword logkeyfile to view the file name of a logging file.  You can also access this information 
in *Script variables with *logkey and *logkeyfile. 
 
 

Date/Calendar Calculations and Display 
 
Use *Exec CalcCalendar to show a dialog with two calendars and with calculations for day 
number, week number, and difference between dates in days, weekdays, and weeks.  As 
detailed below, changing any field on the dialog refreshes all the others. 
 
The dialog is shown at the current mouse position.  To center it instead, put *Window Center 
Active in More Commands of command entry controls. 
 
To change either of the dates, you can click on the day, month, or year subfield within the date 
and then use the arrow or number keys to enter a new value.  Or you can click on the drop 
down arrow, and then select day, month, or year by clicking on that field. 
 
Use the dialog as follows: 
 
To display week number or day number of a date:  set the top date and read the day and week 
number.   
To display difference in dates in days, weekdays or weeks:  set both dates and read the 
difference.  The difference excludes the day of the later date (eg  two day difference between 
July 2 and July 4).  Differences will be negative if the second date precedes the first date. 
 
To show the date for a given week number or day number:  set the week number or day number 
and read the first date. 
 
To find the date a given number of days, weekdays, or weeks before or after a given date:  set 
the first date and set the difference (which can be negative for before) then read the second 
date.  Remember that the day of the later date is excluded from difference calculations. 
 
The week number definition follows the ISO standard:  Week 1 of any year is the week that 
contains 4 January, or equivalently Week 1 of any year is the week that contains the first 
Thursday in January. 
 



Windows PowerPro Page 72 Version 3.7 

To just display a calendar, you can also use *Exec Calendar. 
 
 
 

Prompting for Yes/No Information 
 
Use *Exec Prompt to prompt for a Yes/No answer an set a flag with the result.  For example: 
Command *Exec 
Action: Prompt 
Parameter 14 Any text 
displays a message box with "Any Text" and sets flag 14 according to whether the result is yes 
or no. 
 
 
You can also prompt for a yes/no/cancel result by using a variable instead of a number: 
Command *Exec 
Action: Prompt 
Parameter c  Any text 
Displays a yes/no/cancel dialog and sets c to 0 for no, 1 for yes, 2 for cancel. 
 
 

 
Sound Volume 

 
You can mute sound volume with this command 
Command *Exec 
Parameter mute 
Each time this command is executed, the mute setting is reversed. 
 
You can set the volume for .wav files only with *Exec VolumeWav n, where n is a number 
between 0 and 15.  Use +n or -n to adjust volume relative to current setting.  You can set the 
volume for all playback with *Exec VolumeAll, where n is a number between 0 and 255.  Use +n 
or -n to adjust volume relative to current setting. 
 

CD Functions: 
Use *Exec CD to control your audio CD player.  Enter one of the following commands in the 
parameters box. 
Play n  Plays tracks start an number n.  Omit n to play starting with track 1. 
Next  Plan next track. 
Previous Play previous track. 
Eject  Ejects (opens door for) default audio CD.  
Close  closes door for default audio CD.  
 

Writing Entries to a File 
 

You can use the following command to write a line of text to a file: 



Windows PowerPro Page 73 Version 3.7 

Command *Exec 
Action  ToFile 
Parameter "filepath" text 
writes the text to the end of the file given by filepath.  Enclose the filepath in quotes if it contains 
blanks. A single blank after the filepath is ignored and then the text after this blank is written. 
 
Use a file name of log to write the text to a currently open key logging file. 
 
Examples 
 
*Exec ToFile 
c:\logs\log1.txt this is the text 
writes this is the text to c:\logs\log1.txt 
*Exec ToFile 
"c:\logs path\log1.txt" &(date) date included 

writes the date then the phase date include (assuming & is variable insertion character) to 
c:\logs pth\log1.txt 



Windows PowerPro Page 74 Version 3.7 

PowerPro *File Commands 
 
You can also select a file at random from a folder and copy it over a specified file. 
 
The *File actions are 
copy   copies one file path to a second path; you can use wildcards to 

copy many files 
rename  renames one file path to another: can be used to move files to another 

folder; you can use wildcards to move/rename many files 
move   same as rename 
extchange  Change, remove, or add a file extension. 
delete   deletes a file; you can use wildcards to delete a set of files 
deletenorecycle deletes a file without putting it in the recycle bin; 
deleteold deletes files in folder older than specified number of days. 
copyrandom  copies a randomly selected file to a specified file path 
runrandom  runs a randomly selected file 
commandrandom runs a command with a randomly selected file as a parameter 
 
Put double quotation marks around file paths which contain blanks. 
 
For Copy and Rename, if the second path is a folder, then the file name for this target is taken 
from the file name of the first path. 
 
If you check "Confirm" in configuration, then deletes or overwrites of a file or creation of a new 
directory will be confirmed first.  If you check "Folders", then folders will be included in *.* wild 
card operations. 
 
For DeleteOld, you must provide a number of days then a folder path, optionally including wild 
cards in a file name.  All files older than the specified number of days are deleted to the recycle 
bin.  You can use recent as the folder name to access the folder of recently accessed 
documents. 
 
Extchange works as follows:  First put a file path to be changed, possibly with wildcards, or use | 
as the first file name if the *File Extchange command is in a context menu.  After this first file 
path, put a single dash (-) to remove the extension, or +xxx to add .xxx as the extension, or yyy 
to replace current extension with yyy.  For example, if a context menu contained 
*File Extchange 
| +jpg 
adds .jpg to the files selected in explorer when the context menu is clicked.  
 
Click here for more information on copying and running commands with random files. 
 
Examples 
*File  
Copy 
c:\mypath\in.txt c:\output\out.txt 
copies in.txt to out.txt. 
 



Windows PowerPro Page 75 Version 3.7 

*File  
Rename 
c:\mypath\in.txt c:\output 
moves in.txt to folder c:\output. 
 

 

Working with a Randomly Selected File 
 
Purpose 
 
The *File RunRandom/CopyRandom/CommandRandom actions can be used to select a file at 
random using a file path with wild cards that you provide.  The selected file is then copied to a 
specified target file; or is run directly; or is used in a command line to execute a program or 
batch file that you specify. 
 
One use of this command is to set up your own randomization routines for system files.  For 
example, you can randomize the Windows shutdown screens by creating .bmp files with the 
appropriate size and color depth, putting the files into a folder, and using the command to copy 
a randomly selected file over c:\windows\logow.sys.  Take a backup copy of logow.sys before 
experimenting with this. 
 
To implement randomization on a schedule, put the command as a scheduled command. 
 
Configuration 
 
CopyRandom:   Parameters:  filepath outfile 
selects a file at random from the filepath (which must contain wildcards like *.bmp) and copies it 
over outfile. 
 
RunRandom:   Parameters:  filepath 
selects a file at random from the filepath (which must contain wildcards like *.bmp) and runs it 
using the program associated with the file extension.  
 
CommandRandom  Parameters: commandpath filepath args 
selects a file at random file filepath (which must contain wildcards like *.*), then runs the 
command given by commandpath using a command line consisting of the commandname, the 
selected file, and finally the args.  If you want the command to be run invisibly, put *hide after 
the args at the end of the parameters edit box.  If the command being run is a .bat file, you may 
want to use explorer to set its properties to include close on exit.  This is especially important 
for commands run invisibly. 
 
Examples: 
 
Command *File CopyRandom 
Parameters: "c:\my logo files\*.bmp" c:\windows\logow.sys 
copies a random bmp file from c:\my logo files over the logow.sys file. 
 
Command *File RunRandom 



Windows PowerPro Page 76 Version 3.7 

Parameters: "c:\zounds\*.wav"  
plays a random wav file from c:\zounds. 
 
Command *File RandomCommand 
Parameters: "c:\program files\bat\exec.bat" "c:\random\*.*" arg2 arg3 *hide 
selects a random file from c:\random, then executes the exec.bat file with the selected file as the 
first argument, then arguments arg2 and arg3.  The command is run in an invisible window. 
 



Windows PowerPro Page 77 Version 3.7 

Sending Keys to Other Windows 
 
Purpose 
 
Use the *Keys command to send keystrokes to other windows.  The keystrokes entered in the 
parameters edit box are sent to the currently active window.  You can send keys to enter text, 
such as canned phrases or passwords, or you can send keys to automate functions by sending 
Alt-key or Ctrl-key pairs recognized by programs to execute their functions.  For example, 
functions on menus can often be accessed by Alt-ab where a is the first character of the menu 
name and b selects an item on that menu. 
 
Configuration 
 
Type letters, digits, special characters in the parameters edit box.  Special characters like 
function keys or the date/time can be entered using {xx} abbreviations, such as {enter} or {back 
3}.You can use the find button on the configuration dialog to select a special key or to record 
keys. 
 
To  specify an Alt-prefixed key, prefix it by %; similarly use ^ for Ctrl key, + for Shift, and 
combine as needed (eg %^ for both Ctrl and Alt).  Note that you can often simulate menu 
selections by sending % followed by a set of characters; eg %fn sends Alt-fn which does a 
File|New menu selection in many programs. 
 
Beware of these characters which have a special meaning for Windows PowerPro: 
% use {pe}  or {%} (% alone signals Alt) 
^ use {ca} or {^}(^ alone signals Ctrl) 
+ use {pl} or {+} (+ alone signals Shift) 
 
Example 
 
Command *Keys 
Parameter hello, world 
Sends hello, world to active window. 
 
Normally keys are sent to the currently active window.  But you can switch to another windows 
first by preceding the sequence of keys with {to xxx} where xxx selects the new target window. 
 
If your sequence of keys causes the window receiving the keys to open a new window or menu 
to receive subsequent keys, you may need to insert a wait in your key sequence to allow the 
new window to open and be readied to receive the keys.  Use {w1} to insert a wait on one tenth 
of a second. 
 
If you have a large number of keys to send, you can store them in a file (say 
c:\path\filename.txt) and then use *Keys {from c:\path\filename.txt} to send the keys. If you 
specify a file name without a path, then the file is assumed to be in the same folder as the 
PowerPro configuration file.  You can use many lines in the file to make it easier to enter and 
check the keys; all line ends are ignored.  You can also put a comment at the start of the file by 
putting ** at the start of the first line in the file, then any number of lines of comment text, then ** 
again at the end of a line. 
 
 



Windows PowerPro Page 78 Version 3.7 

PowerPro has two methods of sending keys, the "fast" method (journal hooks) and a slower 
method, which is the default.  Use Configuresetup|advanced|others to change.  The default 
method works for most keys, but the fast method is needed to send shift in XP and W2K,  You 
can temporarily select the fast method for a single *keys command by preceding the keys to be 
send with {fast}: 
*Keys {fast}{home}+{end} 
 
To send mouse clicks, use *mouse. 
 
You can control the delay between sent keys with the advanced options. 
 

Specifying the Window to Receive the Keys 
 
For the overview, see sending keys. 
 
The *Keys command normally sends keys to the foreground (active) window.  You can reset the 
foreground window before sending the keys by putting {to xxx} or {toAny xxx} at the start of the 
keys to be sent. The difference between the two is that {to xxx} only works with visible windows 
and always leaves the focus at the window receiving the keys whereas {toAny xxx} works with 
both hidden and visible windows and returns the focus to the window which had it before keys 
were sent.   
 
For both,  xxx indicates the target window and can be: 
: 
*  sends keys to current active window 
=File Path sends keys to program run from that "File Path" 
Title  sends keys to window with caption "Title" 
PartTitle* sends keys to window with caption starting with "Part Title" (Note asterisk at end) 
*PartTitle sends keys to window with caption end  with "Part Title" (Note asterisk at start) 
*PartTitle* sends keys to window with caption containing "Part Title" (Note asterisks at start 
and end) 
autorun sends keys to window of last window matched by autorun menu 
activebar sends keys to window of last window referenced by active bar button 

 
If the {to xxx} window is not found, you will normally get an error message.  Precede the window 
id with the character ^ to avoid the error, eg 
{to ^*notepad}  

avoids the error message if no Notepad window is open. 

Specifying the Keys to be Sent using *Keys 
 
For the overview, see *Keys. 
 
Send letters, numbers, and other keyboard characters by typing them as you want them to be 
sent.   
 
To  specify an Alt-prefixed key, prefix it by %; similarly use ^ for Ctrl key, + for Shift, and 
combine as needed (eg %^ for both Ctrl and Alt).  Alternatively, you can use {alt} to toggle Alt 
up/down which allows multiple keys to be sent with Alt down:  eg {alt}ab{alt} sends Alt-Down, a, 
b, Alt-Up.  Similarly for {ctrl} and {shift}. 



Windows PowerPro Page 79 Version 3.7 

 
Use {datelong}, {dateshort}, {time} for sending the current date and time.  To send the time 
without seconds, use {time}{back}{back}{back}. 
 
You can change the either the { or the } or both to any non-alphanumeric using the Advanced 
dialog.  They can be set to the same character.   
 
Use the following character pairs enclosed in {} for special characters.  You have a choice 
between the long form and a two-letter abbreviation.  To send the opening brace, use {{}.  To 
send the closing brace, just use }. 
 
You can repeat the character up to 29 times by placing the repeat count following a single 
space just before the closing brace, eg {left 5} for five left arrows: 
 
 
{param}, {pp}  Insert the parameter prompt character (default ?). 
{clip}, {cc}  Insert the clipboard character. 
{var}, {sv}  Insert the script expression character. 
{plus}, {pl}  Plus (also can use {+}) 
{percent}, {pe}  Percent sign (also can use {%}) 
{caret}, {ca}  Caret (also can use {^}) 
{{}   Inserts the brace.  
{brace}, {br}  Curly Brace ( 
{enter}, {en}  Enter 
{space}, {sp}  Space 
{quote}, {qu}  double quote 
{question}, {qn}  question mark 
 
{greater}, {gt}  greater than sign > 
{less}, {lt}  less than sign < 
{tab}, {ta}  Tab 
{esc}, {es}  Escape 
{apps}, {ap}  Apps key 
 
{up}, {au}  Up arrow 
{down}, {ad}  Down arrow 
{left}, {al}  Left Arrow 
{right}, {ar}  Right Arrow 
 
{ins}, {in}  Insert Key 
{del}, {de}  Delete Key 
{back}, {ba}  Backspace Key 
{home}, {ho}  Home Key 
 
{end}, {ed}  End Key 
{pgup}, {pu}  Page Up 
{pgdn}, {pd}  Page Down 



Windows PowerPro Page 80 Version 3.7 

 
{pad+},{p+}  Numeric Pad + 
{pad-},{p-}  Numeric Pad - 
{pad*},{p*}  Numeric Pad * 
{pad/},{p/}  Numeric Pad / 
{pad0},{p0}  Numeric Pad 0 (similar for pad 1 through 9) 
{(scrolllock},{sl} Scroll lock ("use fast send keys" on advanced|setup must be unchecked 
(capslock},{cl}  Caps lock ("use fast send keys" on advanced|setup must be unchecked 
dateshort},{ds} date in Windows short format 
{prevshort},{ps} previous day's date in Windows short format 
{nextshort},{ns} next day's date in Windows short format 
{datelong},{dl}  date in Windows long format 
{time},{ti}  time in Windows format 
 
{fn}   Function Key "n" (eg {f1} for function key 1; do not use the letter n) 
{wn}   Wait n tenths of a second (eg {w1} to wait one tenth of a second). 
{nnn}   Send character with decimal ascii code nnn (first n cannot be 0). 
 
{alt},{at}  Toggle Alt down/up; use {at}ab{at} to send Alt-down, a, b, Alt-up. 
{shift}, {sh}  Toggle Shift down/up; use {sh}def{sh} to send DEF. 
{ctrl}, {co}  Toggle Ctrl down/up; use {co}{ta}{ta}{co} to send Ctrl-Down, tab, tab, 
Ctrl-up. 
{win},{wi}  Toggle Win down/up; use {wi}p{al} to open accessories. 
 
{filemenu c:\path\items.txt}You can select keys to be sent from a menu  
 
Example:  "%fnhello^v%{f4}" sends Alt-F, then n, then hello, then ctrl-v, then alt-f4. 
 
If you have only one key to send,  the surrounding double quotes are not needed.  You can 
send at most 200 keys. 

 
To  send Alt+xxx keys (eg alt+0181 =µ), use {alt}{pad0}{pad1}{pad8}{pad1}{alt}. 

Examples of Keys Commands 
 
For the overview, *Keys. 
 
Command *Keys 
Parameter ^{ed} 
Sends Ctrl+End to the active window.  This key combination often tells the program to go to the 
end of the information being displayed. 
 
Command *Keys 
Parameter "this text contains spaces" 
Sends this text contains spaces to the active window.  
 
 
Command: *Keys 



Windows PowerPro Page 81 Version 3.7 

Parameter {to =prog}^{ho}abc 
Sends Ctrl-Home followed by abc to window started from prog.exe. 
 
Command: *Keys 
Parameter: {to *Notepad}%fo 
Sends Alt-f followed by o to the window with caption ending in Notepad.  This would select the 
open command from the menu. 
 

Sending Keys to Programs When They Are Started 
 
For the overview, see sending keys. 
 
Since Windows is a multitasking system, starting programs and sending them keys requires 
care.  You must make sure the program you are starting is ready to receive them.  
 
To start a program and send it keys at start up, use multiple commands.  For example, to start 
c:\ql\myprog and send alt-g n, specify 
Command  c:\ql\myprog.exe 
More Commands *wait ready 

*keys "%gn" 
The sequence *wait ready causes Windows PowerPro to wait until the program is ready to 
accept input before sending the keys. 
 
If the *wait ready does not work for some reason, try *wait 2 (or some other digit) to wait 2 
seconds. 
 
You can also wait for up to 5 seconds until a window with a specified caption appears by 
preceding the caption with a + and using the {to xxx} option: 
Command: *Explorer 
More:  *keys {to+*Exploring*}"%vl" 
Start Explorer, then waits for up to 3 seconds for the window with a caption containing 
Exploring to appear, then sends Alt-v followed by l to the window with caption starting with 
Exploring.  This could set the list view for Explorer.  This is especially useful with Explorer, 
where the ! may not work (since Explorer is always running).  You must use the  *Keys 
command for this approach. 
 
 

Selecting some Keys to be Sent from a Menu 
 
When sending keys with *Keys, you can display a menu of selections to determine some of the 
keys to be sent.  The selections are stored in a file which specifies the menu item text and the 
corresponding characters to be sent. 
 
Use 
*Keys {filemenu c:\path\items.txt} 
for this feature.  Each line in c:\path\items.txt is of this form 
name=keys 



Windows PowerPro Page 82 Version 3.7 

There may be many lines in the file.  Each line will display a menu item with the menu text set to 
name.  If you select a menu item, the corresponding keys will be used.  If you do not select a 
menu item, then no keys will be sent at all. 
 
The keys can contain special sequences like {tab} or modifier keys alt or ctrl (% or ^).  You can 
also use name= with no following keys to allow a selection of nothing without canceling the 
entire *Keys command. 
 
The name field may contain an & which will cause the following character in the name to be a 
menu mnemonic selecting that menu item from the keyboard. 
 
You can put blank lines in the file.  You can put a line consisting of the word sep in the file for a 
horizontal menu separator and a line of colsep to start a new menu column. Use 
startsubmenu sss to start a submenu called sss and endsubmenu to end a submenu 
 
You can conditionally include portions of the menu by using 
Contextif (expression) 
Title=result 
Endcontext 
The title=result line is only included if the expression is true.  You cannot nest contextif. 
 
You can have other keys to be sent beside the {filemenu}; for example: 
*Keys abc{filemenu key.txt}yz 
will send abc, then the selection from key.txt, then yz. 
 
You can use more than one filemenu. 
 
If you specify a file name without a path or with a relative path, then the file is assumed to be in 
the same folder as the PowerPro configuration file.  If the filename contains a *, the * is replaced 
by the exe filename of the foreground window, which allows the selected file to depend on the 
active window.  Finally, you can use two file names with {filemenu} by separating the file names 
with a comma.  For example 
{filemenu keys\_common.txt,keys\*.txt} 
with Microsoft Word in the foreground would create a single menu from the entries of  
c:\program files\powerpro\keys\_common.txt 
followed by 
c:\program files\powerpro\keys\winword.txt 
 
 

Creating Menus or Bars of Favorite Folders using *Keys 
 
You can create menus or bars to send favorite folders to file open/save dialogs.  PowerPro has 
built-in commands to make this easier for you.  If you want more control of the format of these 
bars or if you want to understand how these built-in commands work, then you will want to 
review the following information. 
 
Use 
*Keys 
{to folder}c:\path 



Windows PowerPro Page 83 Version 3.7 

to send the folder path c:\path to an open/file save dialog.  The {to folder} tells PowerPro to 
automatically select the file edit box to receive the keys, save the contents of that box, send the 
keys to change to c:\path, and then restore the previous contents of the file edit box.   
 
If you are not using English Windows, you must set the letter beside "Folder" on advanced 
setup to the underlined letter in the title beside the file edit box on your open/save dialogs. 
 
To create a bar or menu of favorite folders, put a series of *Keys commands in a command list 
and show them as a bar or a menu with (eg) a hot key that runs a *Bar or *Menu.  If you use a 
bar, you can make the bar appear only if a file open/save dialog is open by putting  
*Format Context 
filedialog 
as the first command in the list, and positioning the bar in the caption or beside the active 
window (use a vertical bar).  Don't forget to check "auto-show as bar". 
Normally, PowerPro executes the selected files as a command.  But you can run another 
command with the selected file or folder as a parameter by checking "Use Last Button for folder 
button command."   (Usually you make this a hidden button).  PowerPro will execute the 
command with the selected file or folder a command parameter. Normally, the selected file is 
placed in double quotes after a space..  You can control the placement of the file by using a | to 
indicate the desired position: 
*script assign x1 length "|" -1 
would assign x1 the length of the file path less 1. Note that you must include the quotation 
marks if appropriate when using |.  Use || to get the folder excluding the file name. 
 
Note that with | and ||, PowerPro does not insert any spaces. 



Windows PowerPro Page 84 Version 3.7 

 

Formatting Menus and Bars with *Format 
 
Purpose 
Use the *Format command to control the look of menus and bars.  You can  use *Format 
Context and *Format Item with menus and bars.  Other *Format command can only be used in 
command lists displayed as menus. 
 
Configuration 
Use the following actions with *Format: 
Separator  Inserts a horizontal separator in a menu;  
NewBarRow  starts a new row in a bar. 
NewBarRowLine  starts a new row in a bar and draw separator line. 
BarVerticalLine  draws a vertical line in a bar. 
NewColumn  Start a new column in a bar or a menu. 
NewColumnLine Start a new column with a separating vertical line. 
StartSubMenu  The following items in the list appear in a submenu. 
EndSubMenu  Ends the submenu.  You can nest submenus up to 4 deep. 
Context/ContextIf Starts a menu section or bar which depends on active window. or an if 

condition 
EndContext  Ends portion of menu depending on active window or if 

condition. 
Item   Changes colors and text associated with menu or bar 

item. 
Drag   Assign to a bar button and then click-drag that button to 

move bar. 
 

Changing the Look of an Item with *Format Item 
 
Execute the *Format Item command to change the look or text of an item on a command list 
used for a bar or menu.   
 
When you configure this command, use the button to access a dialog which will set the 
keywords needed to change item text or color and to specify whether or not the item should be 
visible and should use its own colors.  You also specify the command list and starting and 
ending item number (starting at 1) of the item to be changed.  You can specify an item number 
of 0 to indicate the last button pressed on any bar, in which case the list name is not used. 
 
There are restrictions on changing the text associated with special  *Info labels.  You cannot 
change the text from an ordinary item label to a *Info special label or the reverse.  You cannot 
change tool tips using *Info at all. 
 
When you set new item features with the dialog, you can use a checkbox to indicate whether 
the new item values are to be written into the configuration file.  If they are not written, then the 
values will be reset if you later manually use the configuration dialog and save the new 
configuration.  If this is not what you want, you could put the *Format Item commands to reset 
the desired values in the Reconfigure command list, as set by the advanced setup dialog. 
 



Windows PowerPro Page 85 Version 3.7 

Sending a Sequence of Mouse Clicks and Moves 
 
You can use the *Mouse command to send a sequence of mouse clicks, mouse positions, and 
mouse moves to the active window.  You can combine alt, win, shift, ctrl with these mouse 
clicks.  The parameters field of this command contains a series of two letter commands which 
indicate the mouse actions to perform.  The commands which move or position the mouse are 
followed by two numbers giving the move or position value in pixels.   
 
Here are the commands.  You can use either the long form (eg leftclick) or two letter short forms 
(ll): 
 
leftclick or lc  left click (both left down and left up) 
leftdown or ld  left down 
leftup or lu  left up 
leftdouble or ll  double click left (note: lc lc will not work) 
middleclick or mc middle click (both middle down and middle up) 
middledown or md middle down 
middleup or mu middle up 
middledouble or mm double click middle (note: mc mc will not work) 
rightclick or rc  right click (both right down and right up) 
rightdown or rd right down 
rightup or ru  right up 
rightdouble or rr double click right (note: rc rc will not work) 
save or sa  save current position position 
alt or al  reverse alt key (ie press if up, release if down) 
shift or sh  reverse shift key (ie press if up, release if down) 
win or wi  reverse win key (ie press if up, release if down) 
ctrl or ct  reverse ctrl key (ie press if up, release if down) 
save   save current mouse position 
restore   restore saved mouse position 
mo x y  move mouse x pixels right, y down (x or y can be negative) 
screen or ab x y  set mouse to absolute position x y (absolute means 0 0 is top left 
of screen) 
relative or re x y  set mouse to relative position x y (relative means 0 0 is top left of 
active window) 
 
Examples 
Command *mouse 
Parameter ll 
sends double left click. 
 
Command *mouse 
Parameter ctrl leftdown leftup ctrl 
sends ctrl-left click. 
 
Command *mouse 
Parameter re 20 50 rc 



Windows PowerPro Page 86 Version 3.7 

position mouse at 20 50 with respect to active window then sends right click 
 
Command *mouse 
Parameter ld mo 30 -40 lu 
sends left down, move 30 right, 40 up, left up (eg will draw a line in MS Paint). 
 
Command *mouse 
Parameter ab 40 60 lc 
More:  *keys abc 
moves mouse to absolute position 40 60, sends a left click, then sends letters abc 
 



Windows PowerPro Page 87 Version 3.7 

Displaying Menus with *Menu 
 
Purpose 
Use *Menu to display a menu. It can be built from a command list (*Menu Show), the files in a 
folder (*Menu Folder), recently executed commands (*Menu RecentCommands), captured 
Explorer folders (*Menu Explorer), or the Windows Start menu. 
 
Configuration 
Use the following actions with *Menu: 
 
Show Show a command list.   Use *Format to insert submenus and separators. 
 
Folder Create a menu from a folder. 
 
Recent Shows a menu of recently executed commands.  You must check "Track recent 

commands" on Command List setup. 
 
Explorer Show folders recently accessed with Explorer.  You must check "Track explorer" 

on Setup dialog. 
 
StartMenu Show Windows start menu at mouse cursor.  Alternatively, you can assign 

*Menu Folder StartMenu to a hotkey. 
Tray Show tray icons as menu. 
UnderMouse Show menu bar of the window under the mouse.  Only works in Win95/98.  Must 

be assigned to hot key or as part of menu shown by hot key. 
Note that there are two steps to showing a menu:  defining the command list, say xxx,  and then 
executing a *Menu show xxx command.  For example, to show a menu by pressing a button, 
assign *Menu Show to a bar button command; see the default bar menu button for an 
illustration.  To show a menu by activating a hot key, assign the *Menu Show command to a hot 
key  
 
If you have a bar configured to show a menu with *Menu Show xxx, you can quickly configure 
menu xxx by Alt+clicking the bar button with the *Menu Show command. 
 
You can use *Menu Show or ShowAtButton to show a command list as a menu. 
 
*Menu ShowAtButton is meant for use on bar buttons and shows the menu aligned with the 
button used to display it.  For horizontal bars, the menu is shown below or above the button, 
depending on which half of the screen the bar is in; for vertical bars, the menu is shown to the 
left or right of the button. 
 
*Menu Show gives more control of the menu position.  Use the edit box "Blank or enter position" 
to enter a keyword specifying the menu position; the find button displays a menu of valid 
keywords: 
centerundermouse centers the menu under the mouse 
centerscreen center the menu on the screen 
offset n1 n2 shows menu n1 pixels to left and n2 above the mouse (n1 or n2 can be 

negative) 
screen n1 n2 shows menu at screen position n1 (from left), n2 (from top) 
button shows menu aligned under/above last button pressed on horizontal bar 



Windows PowerPro Page 88 Version 3.7 

horbuttoncenter shows menu centered under/above last button pressed on vertical bar 
verbutton shows menu aligned right/left with last button pressed on vertical bar 
 
The keywords horbutton and verbutton perform the same alignment as *Menu ShowAtButton, 
except that by using *Menu Show, you can choose whether horizontal or vertical bar alignment 
is used. 
 
With *Menu show, you can display a subset of a command list as a menu as follows.  Start 
display at named item xxx by putting @xxx in the edit box under the one used to select the 
name of the command list in the *Menu Show command.  In the command list, insert an item 
*Format Subbar labeled xxx at the start of the menu subset and end the subset by putting a 
*Format Endsubbar at the end. This allows a command list to be used for both a bar with 
subbars and to contain a packed series of submenus. 
 

*Menu Folder 
 
Purpose 
Using the built-in *Menu Folder command, you can show a menu listing the files from a folder 
with subfolders shown in submenus.  Left clicking an entry runs the file; right clicking an entry 
shows the explorer context menu for that entry. 
 
*Menu Folder can display all three types of folders: 
 ordinary file folders 
 shell folders, like control panel, printers, my computer 
 special folders like start menu programs, recent files, desktop (these special folders are 
actually folders of shortcuts, usually under your c:\Windows folder) 
 
Configuration 
Select the *Menu command and the Folder action.  Then type the folder to be displayed or 
browse for it using the find button. You can select special folders from the drop down box. You 
can display more than one folder by listing the folders with a comma after each folder. You can 
use the word "Separator" to show a menu separator.  You can use the word "ColSep" to start a 
new column in the menu.  For example 
c:\textfile,colsep,desktop 
shows the files and folders in c:\textfile, starts a new column, then shows the desktop. 
 
The Format Keywords edit box is used to hold keywords which control which files are displayed 
and how they are displayed; for example, you can change the sort order and you can change 
the number of entries per menu column.  You usually do not enter the keywords directly; instead 
use the find button beside the enter keywords edit box to set these keywords with a dialog.  See 
below for details on this dialog. 
 
You can use *Menu Folder to explore a large tree of files and folders, but if there are more than 
13000 files in the folder and its subfolders, you need to use a special approach.  You could 
exclude files or folders using the Format Keywords.  Or you can navigate one folder at a time;  
see below for details on this approach  
 
You can program your own processing for the files from *Menu folder by creating a command 
list script called HookMenuFolder.  This script will be executed for each selected file with x0 set 
to the full path to the file, x1 set to any command from the keyword dialog, and x2 set to the 
folder used to run *Menu folder.  Note that x1 is the command you specified  before substitution 



Windows PowerPro Page 89 Version 3.7 

of the selected file (eg |s are not processed yet).  You can change x0 and x1 in any way.  If you 
set both x0 and x1 to "", PowerPro does nothing.  If you set only one of x0 or x1 to "", , 
PowerPro runs the command in the other. 
 
Examples: 
 Command: *Menu Folder 
 Folder:  Desktop 
to display a menu of the shortcuts on your desktop. 
 
 Command: *Menu Folder 
 Folder: c:\work\monthly report 
to display a menu of the files in c:\work\monthly report. 
 
 Command: *Menu Folder 
 Folder: c:\work\monthly report\new*.xl? 
display only files matching the wild card filename new*.xl?. 
 
 Command: *Menu Folder  
 Folder Control Panel, c:\ut\myfiles, Sep, Programs Startup 
to display a menu of your Control Panel, all files in c:\ut\myfiles, programs file Start up, with 
menu separator after c:\ut\myfiles. 
 
The command will try to calculate the appropriate number of entries per menu column based on 
screen resolution and menu font; if you are unhappy with the choice you can set it with an 
advanced dialog option. 
 

Format of *Menu Folder 
Use the *Menu Folder command to display the contents of one or more file folders or special 
folders as a menu with submenus for subfolders.  You can control the look of the menu, how 
subfolders are processed, the contents of the menu, sorting, and the command executed by 
using the dialog which is accessed by pressing the find button beside the edit box "enter format 
keywords or use find button for dialog".  Although you can edit the keywords directly, (see here), 
its simpler and safer to always use the dialog accessed by pressing the find button. 
 
Controlling Look of Menu 
Exclude icons:  check to avoid icons on menu.  You may also want to check "Add … to folders 
to easily distinguish folders in this case. 
Add … to folders:  adds … to folder names making it easier to distinguish them from files if icons 
are not used. 
No file extensions:  Removes .xxx extensions from files shown in the menu 
Exclude files:  Only includes folders in menu; useful with "Add explorer entry" to navigate folders 
and then explore one. 
Exclude folders:  Shows only files; no submenus or subfolders appear. 
Add explorer entry:  Add an entry to start of each menu and submenu 
Assign menu mnemonics:  Adds up to 36 menu mnemonics 0, 1, …a, …z to top level menu 
entries to allow them to be easily selected from the keyboard. 
Menu position alignment:  Select position for menu:  at mouse, centered on screen, centered 
under mouse, aligned with last pressed button (beneath or on top), aligned with last pressed 



Windows PowerPro Page 90 Version 3.7 

button (to the left or right).  Alignment with last pressed button left/right or bottom/top depends 
on which half of screen bar is in. 
Start new column after this number of entries (middle of dialog):  starts a new column each time 
this number of entries is placed in a menu.  Use checkboxes to determine whether this applies 
to the main menu only or all submenus and to control whether a line is drawn between columns. 
Set to 999 for a single column menu which will scroll under Win98/2000. 
 
List text to this number of characters:  use to limit file names to keep the menus a reasonable 
width.  Use Setup|advanced to specify that tool tips will be shown; the tool tip shows the entire 
file name.  
Default background: Use default background from command list|setup.  
 
Submenus and Subfolders 
Expand subfolders to max depth:  If unchecked, or if checked and a depth greater than 0 is 
specified, submenus will not be created for subfolders; instead, clicking on a subfolder displays 
its entries in a menu. This option is useful for navigating large menu trees which take a long 
time to load into memory if all submenus are loaded at once. 
Add back etnry:  Useful with previous "Show subdirectories" option to provide for navigation 
back up the folder tree. 
Embed items in outer menu:  If you create a command list to display as a menu and put a 
*Menu Folder in that command list, then the *Menu Folder menu is not generated until you lcick 
on the command when the command list is displayed.  If you prefer that the *Menu Folder be 
generated and displayed as part of the command list manual menu, then check this option. 
Make submenus from folders:  Useful when you have several folders listed in *Menu Folder 
command.  Normally, the entries in the folders listed in the *Menu Folder command are placed 
in the main menu.  If you prefer, submenus can be created for each entry by checking this 
option. 
Expand folder shortcuts:  Normally shortcuts to folders which appear in the folders scanned by 
*Menu Folder are not expanded into submenus and clicking on them displays the folder 
contents using explorer.  Check this option to expand the shortcut instead as a submenu. 
 
Sorting 
Use the dropdown to select the sort order and the check box to specify that all folders should be 
sorted to the start. 
 
Specifying Files and Folder to Include 
You can limit to files with certain extensions by including these extensions separated by blanks 
in the edit box; for example 
.xls .doc .ppt 
includes Microsoft Excel spreadsheets, Word documents, PowerPoint presentations.  
Alternatively, you can omit files by preceding extensions with a dash, eg 
-.exe -.dll 
omits exe and dll files. 
You can omit certain folders by listing names separate by commas in the edit box. 
 
Specifying command to execute 
Windows PowerPro normally runs the file selected from the menu by running the associated 
command; you can instead specify the command and any parameters by putting the command 
and parameters in the edit box: 
c:\windows\notepad 



Windows PowerPro Page 91 Version 3.7 

would cause the file to be read into notepad.  PowerPro will create a command line consisting of 
the command you specify followed by the selected file.  You can use PowerPro built-in 
commands too: 
*File Delete 
in the edit box would delete the selected file. 
 
If you want to run a file path with blanks as a command, enclose it in single quotes: 
'c:\program files\myprog.exe' 
 
Normally, the selected file is placed in double quotes after a space and command.  You can 
control the placement of the file by using a | to indicate the desired position: 
*script assign x1 length "|" -1 
would assign x1 the length of the file path less 1.  I Note that you must include the quotation 
marks if appropriate when using |.  Use || to get the folder excluding the file name. 
*keys {to folder}|| 
 
Note that with | and ||, PowerPro does not insert any spaces. 
 
If you have selected "Add explorer entry", you can use another file manager (or any command) 
by instead of explorer by specifying it, eg 
'c:\program files\2x\2xExplorer' '|*' 
Note single quotes which will be replaced by double when run. 
 
 
Zeroing Variables 
You can zero variables before the menu is displayed or before processing the files with *all by 
listing the variable names, separated by blanks. 
 
Specifying Another Menu Item Name for Add Explorer Entry. 
You can enter a new string to use instead of explorer as the menu item name with the you have 
checked "Add Explorer Entry…" 

 

Special Folders for *Menu Folder 
 
Using the built-in *Menu Folder command, you can display a menu of the special folders used 
by Win95/NT 4.  To access special folders, the parameters edit box for this command can 
contain one or more of the following (separated by commas). 
 
start menu  start menu entries 
desktop  shortcuts on your desktop 
recent   recently accessed documents 
templates  standard document templates 
personal  personal favorites folder 
programs  menu of all program folders (current user for NT4) 
programs xxx  menu of programs folder xxx (eg Accessories) 
Allprograms  menu of all program folders 
Allprograms xxx menu of programs folder xxx for All Users profile (NT4 only) 



Windows PowerPro Page 92 Version 3.7 

AllStart Menu  start menu for All Users profile (NT4 only; note no space after All) 
AllDesktop  desktop for All Users profile (NT4 only; note no space after All) 
 

  

Entering Format Information for Folder Contents Command 
 
See Folder Contents Menu for an introduction.  You can use the work directory edit box to 
control the files displayed in the menu.  Use the dialog accessed by … to set the format 
keywords or enter them directly as follows: 
 
Columns Use autocol n to automatically start a new column every n entries; this gives the menu a 

toolbar look (applies to top level menu only, not submenus).  Use autosoftcol n to 
automatically start a new column every n entries without including a bar between the 
columns (applies to top level menu only, not submenus). 
 
Use autocolall  n to automatically start a new column every n entries; this gives the 
menu a toolbar look (applies to top level menu and submenus).   Use autosoftcolall n to 
automatically start a new column every n entries without including a bar between the 
columns (applies to top level menu and submenus). 
 

Text 
labels 

Using maxtext n limits text labels to n characters. 
Using omit deletes the phrases in the "omit strings..." edit box on the special config tab; 
omit is applied before maxtext. 
Using mne in the menu box means Windows PowerPro will assign single character menu 
mnemonics to the first 36 items on the main menu to allow them to be easily selected with 
the keyboard. 
Using noext in the edit box means file extensions will be removed from menu item 
names. 
 

Position Placing offset n1 n2 shows the menu offset n1 characters to the right and n2 characters 
below the mouse cursor; n1 or n2 can be negative. 
 

Sorting Use nosort in the edit box so that the items will not be sorted.    
Using sortext in the edit box means items to sort by file extension.   
Put sorttime to sort most recently change files first. 
 

Subfolder
s 

Use folderdots in the edit box means "..." is added to folder names; this is useful with 
NoSubDir if you do not use icons in menus. 
Use folderstart in the edit box sorts menu entries with folders at start. 
Put folderback in edit box to add Back (previous folder) entry when NoSubDir specified. 
Use nofolders to omit all subfolders. 
Use foldershortcut to expand all folder shortcuts in the menu and foldershortcuts2 to 
expand only those folder shortcuts with names ending in _x. 
Use nosubmenu in the edit box means all files from subdirectories will be listed in the 
main menu. 
Use empty  in the edit box means empty folders will be included in the menu (normally, 
they are excluded). 
Use nosubdir in the edit box means no subdirectories will be included.  The names of 
subdirectories are still shown; if selected, a *Folder Contents Menu is shown for that 
subdirectory. 



Windows PowerPro Page 93 Version 3.7 

 
Explorer Use nofiles in the edit box means only folder will be shown and not files; useful with the 

explorer option to traverse large folder trees. 
 
Place explorer in the edit box to add a menu entry "Explore" to all submenus; left clicking 
on it will open a single-pane Explorer window on the selected directory and right clicking 
will show an *Folder Contents menu for the folder (useful with nofiles).   Uncheck "Switch 
to if active" to allow new Explorer window to open if explorer is already running. You can 
use another file manager (or any command) instead of explorer by specifying it with cmd, 
eg 
cmd "'c:\program files\2x\2xExplorer' '|*'" 
Note single quotes which will be replaced by double when cmd run. 
 
 
Place explorer2 in the edit box to add a menu entry "Explore2" to all submenus; left 
clicking on it will open a double-pane Explorer window on the selected directory and right 
clicking will show an *Folder Contents menu for the folder (useful with nofiles). 
 

Icons Place noicons in the edit box to omit menu icons (only works if the Folder Contents menu 
is not embedded in another menu). 
Place back in edit box to use default background from command list|setup. 
 

Execution Place *all in edit box to execute all commands, rather than displaying a menu. 
Place *allclose in edit box to close all commands, rather than displaying a menu. 
Place *allclosefoce in edit box to force closed all commands. 

Embed Place embed in the edit box is used if the *Folder Contents command appears in a menu:  
it causes the menu entries to be embedded within that menu rather than appearing when 
the *Folder Contents command is selected (embed must be in lower case). 
 

Position Place center in edit box to center menu on screen. 
Place under in edit box to center menu under mouse. 

File date Putting a number n in the work directory edit box means that only files accessed more 
recently than n days ago will be included. 
Placing sortext in the edit box means items will be sorted by file extension. 
 

Fileman Follow this keyword by a string which replaces "Explorer" in menus when explorer 
keyword used.  

Exclude Follow this keyword by a list of folders, separated by commas, and enclosed in double 
quotes.  These folders will be excluded.  For example, Exclude "c:\window, c:\program 
files" excludes the Windows and Program Files folders. 

Comman
d 

Follow the keyword cmd by a the command to be executed; enclosed in double quotes.  
Use a | to indicate whether the selected file is to be placed in the command line.  If the 
command to be executed is a file path containing blanks, you must enclose it in single 
quotes.  Use single quotes instead of double quotes throughout.   

Zero  Follow the keyword zero by a list of one or more variable names, enclosed in double 
quotes, and separated by blanks.  These variables will be initialized to zero before the 
files are processed.   

Extension To include files with only certain extensions, list the extensions separated by blanks 
including the initial period. 
 
To exclude files with certain extensions, list the extensions to be excluded, separated by 



Windows PowerPro Page 94 Version 3.7 

blanks, and include a - in front of the period of each extension. 
 

 
 
Examples: 
 
autosoftcol 2 offset -15 0 maxtext 5 
Start a new column every 2 entries; limit labels to 5 characters, and offset 15 characters to the 
left of the cursor. 
 
nosubdir .exe 15 
Include .exe files accessed less than 15 days ago from main directory 
 
.xls nosubmenu 
Include Excel spreadsheets from all subdirectories on one menu. 
 
-.dll -.bak 
Exclude dll and bak files. 
 
*Menu 
Folder 
c:\path\to\files 
*all nofolder cmd "*script runfile DoFiles =|" zero "FCount" 
runs script file DoFiles for each file with x9 set to each file name in turn.  No menu is displayed.  
Variable FCount is initialized to zero. 
 
 

Using *Folder Contents Menu with a Large Folder Tree 
 
PowerPro limits the menu and submenus shown by *Menu Folder to at most 13000 files and 
1000 Folders. 
 
To access folder trees with more files, use one of the following approaches. 
 
To show an entire disk, select in work directory: 
 Command: *Menu Folder 
 Parameter: c:\ 
 Format  nosubdir autocol 16 folderback 
The nosubdir keyword is also selected by checking "Show subdirectory only when parent entry 
clicked" on *Menu Folder format keyword dialog.  Shows a menu of all files/folders for top level 
of drive C; selecting one folder shows that folder as menu.  Or, if Shift key held down when 
selecting from menu, shows entire folder as explorer Window.  (Autocol 16 automatically starts 
a new column in the menu every 16 entries).  Also shows a back entry in each menu to allow 
you to go back up the folder tree. 
 
Another approach for large directory tree: 
 Command: *Menu Folder 



Windows PowerPro Page 95 Version 3.7 

 Parameter: c:\ 
 Format  explorer nofiles 
Shows a menu of all folders for drive C with single explore entry in menu for each folder.  Left 
click on this entry to show files for that folder in Explorer window.  Right click to show files in 
*FolderContents Menu. 
 
The first technique shows the menu faster, but requires clicks to go up or down the folder tree. 
 

Window-Specific Bar and Menu Contents 
 
Purpose 
You can specify that portions of a menu or a whole bar should only appear if specified window 
or program is active.  Use the *Format Context and *Format EndContext built-in commands to 
do this.  
 
This is useful, for example, to set up menu entries attached to hot keys where different parts of 
the menu appear depending on which program is active when the hotkey is pressed.  The menu 
could contain *Keys commands to send keys to activate program features; *Format Context 
would be used to display the *Keys commands which were appropriate for the active program. 
 
For menus only, you can also use any if command condition in the parameter edit box.  For 
example,  
Command *Format ContextIf 
Parameter modem 
Shows the menu portion only if a DUN modem connection is active. 
 
The *Format Context the function can also used on a button bar to show or hide the bar 
depending on the active program.  Such a bar could be attached to active window; different bars 
would then appear depending on which program is active.  Each could contain commands 
relevant to the active program. 
 
Configuration 
 
To create a program-specific portion of a menu, you insert a *Format Context command into the 
menu.  In the parameters edit box, put a list of window captions and exe file names.  Use *xxx 
for captions ending in xxx, yyy* for captions starting with yyy, and =exename for all windows 
from the program with .exe file exename (no path).   Follow this command by the program-
specific menu entries.  End with the *Format EndContext command. 
 
To create program-specific bars, put the *Format Context command as the command for left 
clicking the first button and enter the list of window captions to control when the bar is visible 
with this command.  Do not use a *Format EndContext. 
 
The following illustrates a set of menu entries to send control-I (view images) and Ctrl-arrow-left 
(go back) only if Netscape Navigator (netscape.exe) is active. 
 
 Item Name:  Netscape only 
Command  *Format Context 
Parameter  =netscape 
 



Windows PowerPro Page 96 Version 3.7 

Item Name:  Images 
Command  *Keys 
Parameter  ^i 
 
Item Name:  Back 
Command  *Keys 
Parameter  %{al} 
 
Menu Item Name: End 
Command  *Format EndContext 
Parameter   
 
You cannot use these commands in menus attached to clicking on the desktop as the desktop 
will be the active program in this case. 
 

Working with Explorer Windows 
 
Use the built-in *Menu Explorer command to re-open a folder that you recently used with 
Explorer,. 
 
You must check the Windows Explorer option "Display the full path in the title bar" on Explorer 
View|Options. 
 
If you then check "Track Explorer" on the Setup configuration dialog, Windows PowerPro will 
remember the last 32 file folders that you open with Explorer, PowerDesk, or 2XExplorer.  
Activating the command 
Command *Menu Explorer 
Parameter  
displays a menu these folders sorted by path, last accessed, or drive.   
 
To clear the list of explorer windows, use *Exec ClearRecentExplorer. 
 
PowerPro also puts a text mirror copy of the tracked recent folders in the file 
explorer_windows.txt.  This file can be used for Keys {filemenu c:\program files\powerpro\ 
explorer_windows.txt to access the tracked folder names. 
 
Right clicking on the menu with shift or ctrl down will remove the selected entry from the recent 
explorer list. 
 
To clear the list of explorer windows, use *Exec ClearRecentExplorer. 
 
Windows PowerPro will remember whether you used a single or double pane Explorer window 
and use this configuration.  If you wish, you can force a single pan window by holding down shift 
when you select a folder name from the menu, or you can force a double pane window by 
holding down ctrl. 
 
To create a menu of favorite folders, create a command list with a set of commands like this 
 Command: *Exec Explorer 



Windows PowerPro Page 97 Version 3.7 

 Parameter c:\the\folder\path 
Then display it with *Menu Show.  You can also add the *Menu Explorer command to this 
command list to combine the menu of favorite folders with the menu of recent folders.  
Instead of *Exec Explorer, you may prefer 
 Command: c:\windows\explorer 
 Parameter /e,/select, c:\the\folder\path 
 ` Omit the /e for a single pane window.  This will produce the same result as *exec 
explorer. 

 
Displaying a Message with *Message 

 
Use the *Message command to display a message.  If you assign this command to a scheduled 
alarm, the message will appear as a reminder at the specified time.  You will be able to update 
the interval until the message is shown again, or discard the message, or create a copy of the 
message to be shown again after 5/15 minutes while the original message is reset to be shown 
again at the standard interval. 
 
You can automatically close the message box after n seconds by including the number n with 
the command. 
 
If you find that the *message if not taking the focus when you want it to, try using the On Top 
checkbox or putting *takefocus at the end of the message. 
 

Accessing the Screen Saver with *ScreenSaver 
 
Use the *ScreenSaver command to start, stop, enable, disable, or change the screen saver.  
You can also change the saver from the media dialog.   
 
The *ScreenSaver actions are: 
 
Enable  enables the saver 
Disable  disable the saver 
TempDisable  disables the saver until the mouse is moved (see below) 
Start   starts the saver 
Stop   stops a running saver 
Change  changes saver to a saver (.scr file) in same folder, either random 

or sequential 
ChangeTo  changes saver to specified file 
ChangeTimeout changes saver timeout to specified value (in minutes) 
ChangeRestart set, clear, or reverse setting of restart saver when changed setting on 

GUI Control dialog 
 
The TempDisable command is normally used with a screen corner hotkey.  Moving the mouse 
to the hotkey screen corner which activates the command will disable the saver until the mouse 
is moved again. 
 

Shutdown Windows or PowerPro 
 



Windows PowerPro Page 98 Version 3.7 

Use the *Shutdown command to exit PowerPro or Windows.  When you configure this 
command, you can also use checkboxes to specify whether an confirmation dialog should be 
shown, and whether open programs should be forced to close (possibly losing information) for a 
Windows shutdown. 
 
The *Shutdown actions are: 
PowerPro  PowerPro exits 
Dialog  Shows the windows exit dialog 
Reboot  Shuts down window and reboots system 
Restart  Shuts down system with warm windows restart 
Logoff  Logs off current user 
Windows  Shuts down windows 
 
 
 
 

Command Scripts 
 

 
There is a tutorial on scripting in the file PPST 1.01.chm in the PowerPro folder. 
 
Purpose 
 
You can run all the commands on a command list or a file with a single *Script command.  You 
can program scripts with variables, if, and jump commands to wait for some condition or to 
create loops and conditionally execute commands. 
 
You can store scripts in command lists or in files, but you will usually find it easier to work with 
scripts stored in  files 
 
The commands in a script can be 
 Windows commands, like c:\windows\explorer.exe 
 PowerPro built-in commands, like *Wallpaper 
 Script programming commands, like *script if()do 
 
The actions associated with the *Script command as follows: 
 
*Script Assign v 
expression 

Assigns a string or number to a variable 

v=expression Assigns a string or number to a variable 
*Script Run commandlist Runs a script from command list (only left commands are used). 

You can also use the syntax run.script(args) to run command list 
script with argument args.  You can use this syntax alone on the 
command line or as part of an expression. 

*Script RunFile Runs a script from a file. You can also use the syntax 
runfile.script(args) or .script(args) to run file script.txt or 
script.powerpro in the scripts subfolder.  You can use this syntax 
alone on the command line or as part of an expression. You can 
use runfile.script@lab(args) or .script@lab(args) to start 



Windows PowerPro Page 99 Version 3.7 

execution of the script at label lab (no spaces around @) 
*Script If Test an expression to control whether next command is 

executed 
*Script If()do Test an expression to control whether a block of commands is 

run 
*Script Else Used with *Script If()do 
*Script EndIf Used with *Script If()do 
*Scrip For Starts a for loop 
*Script Endfor Ends a for loop 
*Script Break Break out of a for loop. 
*Script Jump Jumps to a label in a script. 
*Script Quit Ends execution of a script. 
*Script Flag Assign a value to a flag. 
*Script Debug Writes following text to a debug window 
*Script Close commandlist Ends all programs listed in command list 
*Script CloseForce Ends all programs listed in command list, forces them closed, 

possibly losing data. 
 
You can use the syntax 
run.script(args) to run a command list with up to 8 comma-separated arguments.  You can use this 
form either alone on a command line or in an expression.  For example,  
getmax=run.max(alpha,beta,gamma) 
would set getmax to result of calling command list max.  Similarly, use 
runfile.script(args) or .script(args) 
to run file script.txt (or script.powerpro). This syntax is the simplest way to pass arguments to your 
scripts; you access them in the script with the arg(n) function. You can use runfile.script@lab(args) 
or .script@lab(args) to start execution of the script at label lab (no spaces around @). You can 
use runfile.dir\script or .dir\script to run file script from subdirectory dir of script folder. 
 
 
You will usually find it more convenient to work with files when creating scripts of any complexity.  
Files are easier to type.  You can use indenting to show program logic.  You can omit the *Script 
when entering *Script commands and you can omit the leading * from all commands.  You can 
add comments.   
 
You can use variables outside of scripts to insert text into commands by defining the expression 
insertion character using Setup|Advanced|Chars.  For example, if the insertion character is & and 
you executed 
*Assign fpath "c:\thefolder\" 
then running 
*Notepad &(fpath)file1.txt 
would cause Notepad to open c:\thefolder\file1.txt. 
Once you define the insertion character, you can temporarily suspend its special meaning by 
preceding it with a quote, e.g. 
*Message put '& in message 
displays  
Put & in message. 
 



Windows PowerPro Page 100 Version 3.7 

You do not use the expression insertion characters in assignment, if, and for statements.  If you 
do, it will be ignored, unless you have checked "process expression character" on 
setup|advanced|characters. 
 
Windows PowerPro normally starts executing the script with the first command on the command 
list.  But if you put the command list item label of a command list item after the command list 
name (preceded by @), PowerPro will start at that entry: 
Command  *Script run 
Command List  mymenu @cmd2 
runs all commands on mymenu starting at the one labeled cmd2. Put the command list name in 
double quotes if it contains spaces. 

 
For convenience, you can preset variable x9 for the script by putting the value for x9 after an 
equal sign (=); 
Command  *Script run 
Command List mymenu =value for x9 
This is often used in a cmd option for *Menu Folder or with an explorer context menu; for 
example 
*Menu 
Folder 
c:\dir 
cmd "*Script runfile aScript =" 
which runs scriptfile aScript with whatever file is selected. 

 
You can use the wait command in a script started with *Script call to wait for some condition.  For 
example, you could run a dialer, wait for the modem, then run a program which accesses the 
modem; see below for a sample of a script which does this. 
 
Variables 
 
PowerPro lets you create variables to hold text or numbers and be used in expressions.  Variable 
names must start with a letter and consist of up to 23 letters and digits and underscores.  The 
case of letters is ignored.  You cannot use any of the following as variable names: 

mci, not, andom,vdeskempty,mounted, length, anywindow, visiblewindow, activewindow, 
validpath, input, inputcancel, timer, timerrunning, eval, run, pproflag 

 
Variables store text strings, but PowerPro will automatically interpret the strings as numbers 
when appropriate (.e.g "-5" + "3" is "-2"). 
 
You assign a value to a variable using the *assign statement  and an expression or 
var=expression: 
 
For example 
var1=  "abc" 
 
*assign w2 length(var1) + 5 
 
LCheck =  var1 le "def" and w2 >3 
 



Windows PowerPro Page 101 Version 3.7 

assigns the variable var1 the string "abc", the variable w2 the string "8", and the variable LCheck 
the string "1" (representing true).  Note that the *Script has been omitted from the *assign 
samples as you can do in script files (but not with command lists). 
 
If you do not assign a value to a variable before you use it, the variable is initialized to the empty 
string ("") which is treated as zero in arithmetic or logical expressions. 
 
You can use variables outside of scripts to insert text into commands by defining the expression 
insertion character using Setup|Advanced|Chars .  For example, if used the insertion character & 
and you executed 
Path = "c:\thefolder" 
then running 
Notepad &(path)\file1.txt 
would cause Notepad to open c:\thefolder\file1.txt. 
 
You can also use the insertion character to insert an expression directly into a command:   
Notepad &(date select -6).txt 
opens a file with the same name as the last 6 digits of the current date. 
 
You do not use the expression insertion characters in assignment, if, and for statements.  If you 
do, it will be ignored, unless you have checked "process expression character" on 
setup|advanced|characters. 
 
Conditional Statement If and If()do/Else/ElseIf/Endif 
 

Use conditional statements if and if()do to control which part of a script gets executed.  For 
*If (expression) 
the statement following the if is skipped if the expression evaluates to 0 or the empty string "".  
Or if the *Script if is followed by More Commands, these commands are skipped rather than the 
next statement if the if is false.  Note that the expression must in parentheses.  You can only 
use *if()do inside of a file or command list script; it will not work in More Commands.  You can 
also use *Script with no Do  outside of a script to control following More Commands. 
To control more than one statement, use 
*If (expression) do 
statements 
*elseif (expression) 
statements 
*elseif (expression) 
statements 
*else 
statements 
*endif 
 
Note keyword do following the if.  The expression must be in parentheses.  The one or more 
statements following the *If()do are skipped if the value of the (expression) is 0 or "" until an 
elseif with an expression which is not 0 or "" or an else are found  and the statements following 
the elseif/else are executed instead.  Otherwise, the statements following the if()do are 
executed then the statements between the else/elseif and endif are skipped.  You can use any 
number of elseif statements, including none. You can omit the else and its statements.  If both 



Windows PowerPro Page 102 Version 3.7 

else and elseif appear, the else follows all elseifs.  You can nest other if()do-else-endifs within 
the statements follow the if()do or the else.  For example 
 
*if (ctrl or v>3) do 
 *Message ctrl is down or v is greater than 3 
 *assign x 12 
*else 
 *Message ctrl is not down or v is le 3 
*endif 
 
Shows the first message when the expression is true (evaluates to non-zero) and assigns x the 
value 12.  Otherwise the second message is shown. 
 
 
*if (a eq 1) do 

*debug a is 1 
*elseif (a eq 2) 

*debug a is 2 
*elseif (a eq 3) 

*debug a is 3 
*else 

*debug a gt 3 
*endif 
 

Selects one of the *debug statements depending on the value of a. 
 

For, Endfor, Break Statements 
 
Use the For statement to create a loop.  The statements 
 
for (var=initexpr; testexpr; var=increxpr) 
statements 
endfor 
 
are exactly equivalent to 
 
var=initexpr 
@loop 
if (testexpr) do 
   statements 
   var = increxpr 
   jump loop 
endif 
 
In other words, the for executes the initialization var=initexpr, then tests the textexpr.  If not 0 or 
"", the statements and the var=increxpr are executed, then the loop is repeated until the testexpr 
is 0 or "".   



Windows PowerPro Page 103 Version 3.7 

 
You can prematurely end a for loop with the break statement:  executing a break skips past the 
endfor. 
 
You can nest for statements to a maximum depth of 3. 
 
The statements var=initexpr and var=increxpr can actually be any statement (except for or if). 
 
You can omit sections of the for statement: 
for (; testexpr; var=increxpr) 
for (var=initexpr; testexpr;) 
for (var=initexpr;;var=increxpr) 
for (;textexpr;) 
for (textexpr) 
 
If you omit the test expression, then it is taken to be true and you will get a loop that can only be 
terminated by a break or quit. 
 
The form for(testexpr) is equivalent to a while statement as used in other languages. 
 
Do not use jump to exit a for loop.  You will get error messages or unexpected results if you do.  
Use break. 
 
Be careful when nesting for and if()do statements.  If an if()do is within a for loop, the 
corresponding endif must be as well.  Also, if a for is within an if()do, the corresponding endfor 
must be as well.  PowerPro does not always check for this, but you will get unpredictable results 
if you do not nest correctly. 
 
You cannot use for() in More Commands; it only works in scripts. 
 
 
Quitting Scripts 
 
Windows PowerPro normally executes all commands until the end of the script, but you can stop 
execution by the command: 
Command  *Script 
Action   quit 
 
Follow by the keyword all to quit any calling script too. 
 
If your script is called with the syntax run.script(args) or runfile.script(args), you can return a 
result from the script with the syntax 
quit (expression) 
 
For example 
 
max=arg(1) 
if (arg(2)>max) 



Windows PowerPro Page 104 Version 3.7 

   max=arg(2) 
if (arg(3)>max) 
  max=arg(3) 
quit (max) 
 
returns the maximum of three arguments. 
 
Jump 
 
To jump or loop, use 
Command  *Script 
Action   jump 
Parameters  xxx 
to go to label xxx of the currently executing script for the next command.  For scripts in command 
lists, put the label in the item name field.  For scripts in files, create a label xxx by starting a line 
with @xxx.  The rest of the  line can be empty or can contain a command. 
 
Flags 
 
To help with Script programming, Windows PowerPro has a set of 32 flags which you can 
manipulate and test.  To set a flags n1 through n2: 
Command  *Script 
Action   flag 
Parameters  set n1 n2 
where n1 and n2 are any numbers between 0 and 31.  You can omit n2 if you only want to 
access one flag.  To clear flags, use flag clear n1 n2; to toggle (reverse) the setting, use flag 
toggle n1 n2.  Use 0 31 for n1 n2 to access all flags.   
 
You can test the flag with the if command; use  
Command  *Script 
Action   if  
Parameters  (pproflag(4)) 
to check to see if flag number 4 is set; use (not pproflag(4)) to check to see if it is clear. 
 
You can reference flags in any expression as pproflag(n), where n is a number between 0 and 
31;  if the flag is set, then the value is 1, else it is 0. 
 
You can set flags at start up with the command line. 
 

 
Expressions 
 
Purpose 
 
Use expressions in PowerPro to compute a number or a string.   
 
You can use an expression to assign a value to a variable with var=expression or *Script assign.  
You can also use an expression as the condition in a *Script If()do statement or a *Format 



Windows PowerPro Page 105 Version 3.7 

ContextIf.  And you can insert an expression directly into a command with the variable insertion 
characters (say &).  For example, 
x  = 5 + 2 *length "abc" 
assigns 11 to variable x (i.e. 5 + 2*3). 
 
 str=  select ("abcdef" ,3) ++ "123" 
assigns "abc123" to variable str.   
 
*script if  (alpha >= 5 or select(beta, 2) == "ab")) do 
executes the statements following the if-do if the expression is true (value 1). 
 
 
Normally you must use an expression as part of another statement, such as an assignment or an 
if statement.  But PowerPro will allow the following expressions to be used alone as statements: 

expressions starting with do, eval, messagebox, mci, inputdialog; 
expressions starting with a plugin call. 

 
 
Structure of Expressions 
As can be seen in the examples, an expression is a series of values and operators.  The 
expression is evaluated from left to right taking into account any parentheses as well as the 
relative priority of operators (e.g. multiplication before addition so that 1+2*3 is 7). 
 
PowerPro can work with either strings or numbers in expressions and will try to use whatever is 
appropriate to the operator.  For example, "-12" + 9 yields the number 3.  "-12" join "ab" yields the 
string "-12ab". 
 
Values 
 
In PowerPro, a value in an expression can be one of the following 
a string literal enclosed in double quotation marks,  like "abcd".   
a number, like 15 or -22; only whole numbers (integers) can be used 
a variable, like a or x4; see programming for more on variables 
a special keyword, like date; see below for keyword details 
a function call, like length(string) or window("caption", ="notepad") 
a plugin call, like date.add(date, 7) 
a call to run a script, like run.script(args) or runfile.script(args) or .script(args) 
 
You use the character ' as an escape character in strings in expressions.  First, check "Use quote 
' for escape in expression strings" on Setup|Advanced |Chars.  Then you can use the following 
sequences in PowerPro strings. 

'n newline 
'r carriage return 
't tab 
'" double quote 
'' single quote 

 &          expression follows character (replace & by whatever character you use) 
 



Windows PowerPro Page 106 Version 3.7 

Keyword Values 
 
Powerpro lets you use any of the following keywords in an expression to get at system values: 
 

date Todays date as 8 digit string yyyymmdd (e.g. 2000 12 31) 
shortdate Todays date in control panel|regional short date format 
longdate Todays date in control panel|regional long date format 
xtime Time in control panel|regional time format 
time Time as 6 digit string hhmmss, 24 hour clock, eg. 140515. 
timesec Number of seconds since midnight January 1, 1970 
dayofyear Day of year (eg 35 is Feb 4). 
dayofweek Day of week as single digit (Sunday is 0, Monday 1, etc.) 
timezone Name of current time zone. 
uptime Number of seconds Windows has been running 
ctrl Value 1 if ctrl key id down, 0 otherwise. 
shift Value 1 if shift key is down, 0 otherwise. 
alt Value1 if alt key is down, 0 otherwise. 
win Value 1 if  apps key is down, 0 otherwise. 
mouseleft Value 1 if  left mouse button is down, 0 otherwise. 
mousemiddle Value 1 if  middle mouse button is down, 0 otherwise. 
mouseright Value 1 if  right mouse button is down, 0 otherwise. 
pprofolder Folder of PowerPro configuration (including terminating \) 
pproversion Version of powerpro as four digit integer, e.g. 3310 or 3400.) 
disk Letter of disk where PowerPro as run from  (e.g. c) 
deskname Name of current virtual desktop 
desknum Number 1-9 or current virtual desktop. 
deskempty 1 if current vdesk empty; 0 otherwise 
currentdir Path to working folder of current foreground window 
Subbarname Name of current subbar 
caption Caption of current foreground window 
captionunder Caption of window under the mouse 
exefullpath Full path to exe name for current foreground window 
exefilename File name (no path, no .exe) to exe file for current foreground 

window  
dunidle (95/98) Number of seconds since last characterreceived over dial-up 
dunrate (95/98) Dial up rate in characters per second 
pmem Percent free memory 
cpu Cpu usage (98 only) 
gdi Gdi resources (95/98 only) 
user User resources (95/98 only) 
threadcount Number of active threads 
processcount Number of active processes 
cdcurtrack Current CD track 
cdlasttrack Last CD track 
defaultprinter Name of default printer 



Windows PowerPro Page 107 Version 3.7 

keylog "X" if logging; zero otherwise 
keylogfile Name of currently open key log file; empty string "" otherwise 
lastidletime Length of last idle period in which an alarm occurred 
clip First line of clipboard; only first 263 charaters of first line are 

returned.  Use clip plugin for unlimited clipboard access. 
lastclippath Full path to last captured clipboard item 
lastclipname File name of last captured clipboard item 
lastactivehandle Window handle to last window selected by active button 
lastautorunhandle Window handle to last window selected by autorun item 
cliptrackon Set 1 if clip tracking is on; 0 otherwise 
xmouse Horizontal mouse position in pixels (0 for extreme left of screen) 
ymouse Vertical mouse position in pixels (0 for extreme left of screen) 
xscreen Screen width in pixels. 
yscreen Screen height in pixels. 
paper Wallpaper file name 
saver Screen saver file name 
saveractive Value 1 if screen saver active; 0 otherwise. 
batterypercent Percent battery power left 
volume Current master volume (0 - 255); can be set by *Exec VolumeAll 
muted Set 1 if muted sound; set 0 otherwise. 
acdc "A" if running on ac power; "D" otherwise 
recycleSize total size of recycle bin on all drives in KB 
recycleItems total number of items in recycle bin on all drives  
modem 1 if dial-up connection active; 0 otherwise. 
browserURL URL in current browser window 
browserDomain Domain in current browser window 
browserSubdomain Domain and subdomain in current browser window 
inputtext Display input dialog; same as function input("text") except you 

cannot set the title. 
inputpath Displays file browse dialog and returns results. Clear flag 0 if 

cancel pressed; sets it otherwise. 
inputfolder Displays folder browse dialog and returns results. Clear flag 0 if 

cancel pressed; sets it otherwise. 
inputcolor Displays color dialog and returns results as single number (eg 

for *Desktop IconTextColor).  Clear flag 0 if cancel pressed; sets 
it otherwise. 

inputdate Displays calendar calculator dialog and returns selected date as 
8 digits yyyymmdd.  Clear flag 0 if cancel pressed; sets it 
otherwise. 

inputdatetime Displays calendar calculator dialog and returns selected date 
and time as 14 digits yyyymmddhhmmss  where 24 hour clock is 
used for time.  Clear flag 0 if cancel pressed; sets it otherwise. 

 
 

For example,  
x =  ReplaceChars( browserDomain, "._") 
assigns x the Browser Domain with dots replaced by underscores. 



Windows PowerPro Page 108 Version 3.7 

 
minutes =  (time /100)%100 
assigns minutes the current number of minutes in the time. 
 
 

 
Operators and Functions 
 
Powerpro has arithmetic, comparison, string, and special operators and functions. You can also 
call plugins from expressions. 
 
The following functions which take one following operand, like mci("string") or input("title"). The 
parentheses are optional for functions with one operand, so you can write input "title" or mci 
"string" as well.  
 

mci Execute mci command; see section on mci below for details 
not Result is 1 if following expression is zero or empty string; 0 otherwise. 
arg arg(n) returns nth argument in call to script using runfile.script(arg1,arg2,…) or  

run.script(arg1,arg2,…).  arg(1) is first argument. 
eval Evaluates following string as an expression and returns results. Eval allows 

you to build expressions as strings and then evaluate them t. 
random Random n returns a random interger between 1 and n. 
vdeskempty Returns 1 if vdesk named by followed string is empty; returns 0 if it is not; 

returns 2 if it does not exist.  Vdesk name can be a single digit n for the nth 
desktop,  desktop name, "" for current desktop, 0 for list of locked windows.  
Example:  vdeskempty 1 examines first desktop.  Example:  vdeskempty x2 
examines desktop whose name in variable x2. 

mounted Result is 1 is following string's first letter is removable disk and is mounted; 0 
otherwise. 

length Compute length of following string; see section on strings below for details. 
filemenu Displays a file as a menu, returning the selected item's text.  See section on 

filemenu in *Keys for details of file layout. 
anywindow Result is 1 if following string is a caption list which matches any open window 

(visible or not); 0 otherwise. 
visiblewindow Result is 1 if following string caption list matches any open visible window; 0 

otherwise. 
activewindow Result is 1 if following string caption list matches the foreground window; 0 

otherwise. 
validpath Value is 1 if following string is validpath to file and 0 otherwise.  String may 

contain wildcards (* and ?). 
env Value of environment variable named by following string. 
input Prompts for input using title for input dialog given by following string.  To limit 

input length, start title with =n, e.g. input "=15Enter up to 15 chars".  Result if 
whatever input is entered.  If Cancel pressed, result is "". 

inputcancel Same as input, except that if cancel is pressed then a running script and any 
calling script are immediately ended. 

pproflag Usage pproflag(n) returns value of nth flag. 
timer Value of timer  in seconds; first letter of following string determines timer, e.g. 

timer "c" for timer c.  You can also use number 1 - 26, e.g. timer 14. 



Windows PowerPro Page 109 Version 3.7 

timerrunning Usage:  TimerRunning(t). Returns 1 if timer running; 0 otherwise. First letter of 
following string determines timer, e.g. timerrunning ("c") for timer c.  You can 
also use number 1 - 26, e.g. timerrunning(14). 

 
 
PowerPro also has operators like addition and comparison, as listed in the following table. 
 

* Multiple two numbers.  5*2 is 10. 
/ Divide; result is truncated to nearest integer.  12/5 is 2. 
% Remainder after division; 15 % 4 is 3. 
  
+ Addition.  2 + 2 is 4. 
- Subtraction.  15 - 8 is 7. 
++ Join two strings.  "abc" ++ "defg" is "abcdefg" 
  
== eq Result is 1 if values are equal; 0 otherwise.  Case of letters strings is ignored in all 

comparisons, e.g. "abc" is equal to "AbC". 
!= ne Result is 1 if values are not equal; 0 otherwise. 
< lt Result is 1 if first value less than second value; 0 otherwise. 
<= le Result is 1 if value less than or second equal to value 2; 0 otherwise. 
>  gt Result is 1 if first value greater than second value ; 0 otherwise. 
>=  ge Result is 1 if first value greater than or equal to second value; 0 otherwise. 
  
& and Result is 1 if both values are 1; result is 0 otherwise 
  
| or Result is 1 if either value is 1; result is 0 otherwise 
  

 
The grouping in the above table shows the priority of the operators.  Operators nearer the top of 
the table have higher priority.  For example, * priority is higher than + and -; in turn + and - have 
higher priority than the string operators which have higher priority than the relational operators 
like ==.  The operator or has the lowest priority. 
 
Note that you have a choice of symbol or keyword for the relational and logical operators (e.g. 
== or eq, & or and).  This is helpful if you have set one of the special characters to have another 
meaning to PowerPro, e.g. if you have set & to expression follows character. 
 
Operators consisting solely of alphabetics, like and or not, must be preceded and followed by a 
blank when used. 
 
Finally, PowerPro has functions of two operands, such as select("string", 5) and case("upper, 
"string").  Functions with two operands must always be followed by a left parenthesis; the two 
operands are separated by a comma.  You can nest function calls, such as  
select (case("upper, "string"), 2) 
 
The following table shows the functions with two operands: 
 



Windows PowerPro Page 110 Version 3.7 

max Maximum of two values eg. max(x0, 7) 
min Minimum of two values eg min("abcd", vstring) 
do Uses three arguments:  do(cmd, param, dir) and runs the command stored 

in cmd with parameters stored in param and work directory stored in dir.  
You can used with file commands (.exe) or with PowerPro * commands, like 
*script.  For * commands, use the cmd to store the * command name, the 
param for the action and any parameters, and the dir for any keywords. 
Example:  do("notepad.exe", "c:\file", "").  Example:  do("*menu", "show 
test", "center").  The do function provides an alternative to using the 
expression follows character to create commands, e.g. use 
do("notepad.exe", thefile,"") instead of notepad.exe &(thefile).  The function 
do can be used alone on a command line.  If used in an expression, it 
always returns 1 

assign Assigns second string to variable name give by first string; eg 
assign("var1", "xx") assigns "xx" to var1.  Then assign(var1, "000") would 
assign "000" to variable xx.   Result of operation is the assigned value (ie 
second value). 

  
word Usage: word ("string" , number).  Scans the string and returns the word given 

by number, starting at 1.  A word is any sequence of non blank characters.  If 
number is negative, starts from end of string.  
word( "aaa b$ ccc" , 2 ) is "b$" and 
word( "aaa b$ ccc", –3 ) is "aaa". 

Join Join two strings.  join ("abc", "defg") is "abcdefg".  Same as ++ operator. 
inputdefault Use: InputDefault("default",  "title")  Prompts for input using title for input 

dialog and "default" for default value.  To limit input length, start title with =n, 
e.g. input "=15Enter up to 15 chars".  Result if whatever input is entered.  If 
Cancel pressed, result is "". 

inputdialog Shows a dialog to input up to 6 variables; see below for details. 
messagebox Shows a message box; see below for details. 
formatdate Formats a date; see below for details. 
formattime Formats a time; see below for details. 
diskspace Diskspace ("kfree", "c:") returns free kilobytes on drive c.  You can use any 

drive letter.  Instead of "kfree", you can use "kuser" (space available to 
current user in kilobytes), "ksize" (size of drive in kilobytes), and "mfree". 
"muser", "msize" for the same quantities in megabytes.. 

ifelse The first string should contain a comma; result is everything up to this 
comma if second string is not zero or empty and everything after comma 
otherwise; e.g. ifelse (10<20,"alpha,omega",) is "alpha".  You can also use 
with three operand:  ifelse(expr, s1, s2) returns s1 if expr is not 0 or "" and 
s2 it if is. 

if The result if the first string if second string is not zero or empty; result is "" 
otherwise.  . 

remove Remove characters from string; see section on strings below for details. 
select Select characters from string; see below for details. 
index Index of second string within first; see below for details. 
revindex Index of last occurrence of second string within first; see below. 
fill Combines strings; see below for details. 
case Changes string case; see below for details. 
replacechars Replaces character(s) by specified replacement character. 



Windows PowerPro Page 111 Version 3.7 

repeat Returns string formed by repeating first argument number of times given by 
second. 

window Determine window coordinates; see below for details. 
readline Usage: readline("filepath", n ) reads the nth line from text file  filepath and 

returns this string; Line numbers start at 1.  e.g.  
x1=3 
line=readline ("c:\path\path.txt",x1)  
assigns third line of file to line.  Flag 0 is cleared by readline if a line is read 
and is set if end of file is reached before desired line number. 

vdeskhaswindow Usage: vdeskhaswindow ("vdeskname","captionlist") returns 1 if named 
desktop has window matching captionlist..  Vdeskname can be a single 
digit n for the nth desktop, a desktop name, "" for current desktop, 0 for list 
of locked windows.  For example, 
vdeskhaswindow( "misc" , "*internet explorer") 
returns 1 if internet explorer window open on desktop misc. 

 
String Operators 
 
PowerPro has operators to help you work with strings of characters.  PowerPro supports strings 
of any length.  
 
Length returns a number representing the length of a string:  length ("abc") is 3. 
 
Join  or ++ is used to join one string to the end of  another:  "ab" ++ " 1" is "ab1" 
 
Remove is used to remove characters from a string.  Specify  remove(string,number). For 
example,  
remove ("abcd" , 2) 
is "cd".  Use a negative number of remove characters from the end of a string.  For example, 
remove( "abcd", -3 ) 
is "a". 
 
Select is used to select characters from the start, end, or middle of a string.  Specify as  
select(string,number).  If number is positive, characters are selected from the start:  
select ("abcde", 3) 
is "abc".  If number is negative, characters are selected from the end: 
select ("abcde" ,-1) 
is "e’.  Finally, to select characters from the middle of a string, use three operands for select. 
For example, to select the 2nd through 4th character, use 
select ( "abcde" , 2,4) 
which yields "bcd".   
 
Index is used to find one string in another, ignoring case of letters.  The operator index returns 0 
if the second string is not found.  If it is found starting at the nth position, index returns n.   For 
example, 
index( "to be or not to be", "be") 
returns 4. 
 



Windows PowerPro Page 112 Version 3.7 

RevIndex is used to find last occurrence one string in another, ignoring case of letters.  The 
operator index returns 0 if the second string is not found.  If it is last found starting at the nth 
position, revindex returns n.   For example, 
revindex( "c:\path\to\filname.txt", "\") 
returns 11 (index of last backslash). 
 
Fill is used to pad a number or string using a padding string.  The expression 
fill( string, number) 
creates a string of length no less than the first string with the ending characters set by the 
second number or string.  For example,  
fill ("0000",12) 
yields "0012" and  
file("***///", "a") 
yields "***//a". 
 
Case is used to change the case of a string.  The first string tells how to change the case of the 
second string.    
case ("lower", "AbcDEf") yields "abcdef"; 
case ("upper", "AbcDEf") yields "ABCDEF"; 
case ("title", "each WORD capital") yields "Each Word Capital; 
case ("sentence", "Just the firST") yields "Just the first".    
The string "acronym" creates an acronym from the first character of each word: 
timezone = "Easter Standard Time". 
case ("acronym", timezone) 
 would yield "EST.  
 
ReplaceChars is used to replace character(s) by a given replacement character.  Characters in 
the first string are replaced according to the second string.  The second string must be at least 
two characters for replacement to occur.  The final character in the second string is the 
replacing characters.  All occurrences of any other characters in the second string which occur 
in the first string are replaced by this final character.  For example, the result of  
replacechars ("xx.x.abc=*", ".=_" ) 
is "xx_x_abc_*".  The _ has replaced all occurrences of  . or =.  Unlike other string operators, 
ReplaceChars is case sensitive. 
 
 

MessageBox 
 
The messagebox operator shows a message box with up to three buttons and returns a result 
indicating which button was pressed.  The form is: 
messagebox ("layout", "text") 
where "text" is the text for the messagebox and "layout" contains keywords specifying the 
buttons and icons for message box.  To set the buttons, the "layout" can contain any of 
abortretryignore, okcancel, retrycancel, yesnocancel, yesno, ok 
To set the icons, the "layout" can contain 

exclamation, warning, information, asterisk, stop, error, question 
For example 
messagebox("yesno question" , "continue with script?") 



Windows PowerPro Page 113 Version 3.7 

displays a yesno messagebox with a question mark icon. The result depends on the button 
pressed.   
Cancel=0, OK=1, Abort=3, Retry=4, Ignore=5,Yes=6, No=7. 
 

InputDialog 
 
The InputDialog operator displays a dialog with up to six edit boxes, check boxes, or combo 
boxes to set the values of up to six variables.  You can also set the variable to a folder name or 
a file name.  The form is: 
inputdialog"("var1=title1, var2=title2,  var3=t3, var1=t4, var2=t5,  var3=t6", "caption for dialog") 
You can use up to six var=title strings, separated by commas.  For example, 
Inputdialog ("x1=Enter new stuff, beta=Value here" , "Two variables") 
displays a dialog with caption "Two Variables" and two edit boxes.  The first box has title "Enter 
new stuff", is initialized to the variable x1, and is used to reset variable x1 when OK is pressed.  
The second box has title "Value here" and uses variable beta. 

 
To display a check box rather than an edit box, add two question marks (??) to the end of the 
title; that is use var=check label??. 
 
To display a combo box rather than an edit box, add two question marks (??) to the end of the 
title and follow the question marks by the list of combo box items separated by bars.\; that is use 
var=combo title??item1|item2|third item. 
 
 
The dialog contains File and Folder buttons to retrieve files and folders.  The retrieved names 
are put in the last edit box which had the keyboard focus before the button is pressed. 
 
The result of the operator is 1 unless cancel is pressed in which case it is 0. 
 
 
FormatDate and FormatTime 
 

Formatdate returns a formatted date.  Usage is  
formatdate ("format string",yyyymmdd)  
where yyyymmdd is 8 digit date.  The format string can be longdate or shortdate, to select 
formats set on Control Panel|Regional Settings.  Or it can be a combination of the following 
 
d    Day of month as digits with no leading zero for single-digit days.  
dd    Day of month as digits with leading zero for single-digit days.  
ddd   Day of week as a three-letter abbreviation.  
dddd   Day of week as its full name.  
M   Month as digits with no leading zero for single-digit months.  
MM   Month as digits with leading zero for single-digit months.  
MMM   Month as a three-letter abbreviation.  
MMMM  Month as its full name.  
yy    Year as last two digits, but with leading zero for years less than 10.  
yyyy   Year represented by full four digits.  

 



Windows PowerPro Page 114 Version 3.7 

Case of letters is important.  You can use special characters like / or : in the string.  For 
example,  
formatdate( "dddd, YYYY/MMM/dd", "20020822") 
returns "Thursday, 2002/Aug/22" (for English locale) 
 
Formattime returns a formatted time.  Usage is 
formattime( "format string",hhmmss) 
where hhmmss is time using 24 hour clock  The format string can be any combination of: 

h    Hours with no leading zero for single-digit hours; 12-hour clock  
hh    Hours with leading zero for single-digit hours; 12-hour clock  
H    Hours with no leading zero for single-digit hours; 24-hour clock  
HH    Hours with leading zero for single-digit hours; 24-hour clock  
m    Minutes with no leading zero for single-digit minutes  
mm   Minutes with leading zero for single-digit minutes  
s    Seconds with no leading zero for single-digit seconds  
ss    Seconds with leading zero for single-digit seconds  
t    One character time marker string, such as A or P  
tt    Multicharacter time marker string, such as AM or PM  

 
For example, 
formattime( "h:mm:ss tt" , "140102") returns "2:01:02 PM". 
 
 
VisibleWindow, AnyWindow, ActiveWindow Operators 
 
These three operators must be followed by a string which is interpreted as a caption list.  For 
visiblewindow, the result is 1 only if a matching, visible window exists.  For anywindow, the 
matching window can be hidden.  For activewindow, the matching window must be the 
foreground window.  For example, 
*if (activewindow "=explorer") 
checks to see if explorer is the active window.  Another example: 
 
v = not ( visiblewindow "*notepad*,*internet explorer") 
assigns v 1 only if neither notepad nor internet explorer is running in a visible window. 
 
 
Window Operator 
 
 
The window operator lets you get at the position, size, min/max/visible/topmost state, caption, 
exename, exe full path, window class, and window handle of any window on the screen.  Use 
window ("pos", "caption") 
where pos is one of "left", "top", "bottom", "right", "height", "width", "minimized", "maximized", 
"visible", "topmost",  "caption", "exename", "exefullpath", "class",  "anywindow", "visiblewindow", 
"class", , "anywindow", "visiblewindow", "firstwindow" and caption is a caption list string that 
matches the caption of the window (e.g. *notepad* for notepad).  You can also use "active" as 
the caption to select the foreground window, "under" to select the window under the mouse,  
and "taskbar" to access the TaskBar.   



Windows PowerPro Page 115 Version 3.7 

 
See section on window handles  for information on "anywindow", "visiblewindow", "firstwindow". 
 
For example,  
window ("right","*explorer*" ) 
returns the coordinate of the right side of the first window PowerPro finds with explorer in its 
caption.  For example,  
window( "caption", "=notepad") 
returns the caption of the first window found from notepad. 
 
 

Help on Expressions 
 
Note:  The PowerPro folder contains a file expressions.txt which you can use to help remember 
the format and definitions of keywords and operators.  Define a hot key to execute the 
command 
*Keys 
{filemenu expressions.txt} 
This will display a menu of keywords and operators; select one to add it to currently open editing 
window.  You can edit expression.txt if you like to change the layout of the menu. 
 
 
(Note:  older versions of PowerPro used an operator syntax for functions of two variables, such 
as "filepath readline n.  This will still work but the function syntax is preferable). 

 
 

Sample Script 
 
Here is a sample of a script which uses *wait to wait on the status of both the modem and a 
program and uses *Windowto terminate a program.   
 
Starting the script uses the Dundial program, described in dundial.txt in the Windows PowerPro 
directory, to dial a DUN connection.  When the connection is completed, both Microsoft Internet 
Explorer and a communications optimization program called Speedup are started.  The script 
then waits until the user terminates Microsoft Internet Explorer; then the modem connection and 
the Speedup program are also terminated. 
 
To configure this script, create a new command list called (say) internet.  Then enter the items 
shown below.  Once them menu is created and saved, the script can be run with the command: 
Command  *Script 
Parameter  run internet 
 
Here are the entries for menu internet. 
 
Item Name  Dial connection 
Item Command c:/program files/PowerPro/dundial.exe 
Item Parameters DunName UserName Password 
 



Windows PowerPro Page 116 Version 3.7 

Item Name  Wait for connection 
Item Command *wait 
Item Parameters modem 
 
Item Name  Start SpeedUp program 
Item Command c:/program files/speedup/speedup.exe 
Item Parameters  
 
Item Name  Start explorer 
Item Command c:/program files/Internet Explorer/IExplorer.exe 
Item Parameters  
 
Item Name  Wait for explorer to be terminated 
Item Command *wait 
Item Parameters nopath c:/program files/Internet Explorer/IExplorer.exe 
 
Item Name  Hangup connection 
Item Command c:/program files/PowerPro/dunhang.exe 
Item Parameters * 
 
Item Name  End SpeedUp program 
Item Command *Window 
Item Parameters close =c:/program files/speedup/speedup.exe 
 
In a file, the script would look like this: 
 
"c c:/program files/PowerPro/dundial.exe" DunName UserName Password 
*wait modem 
"c:/program files/speedup/speedup.exe" 
"c:/program files/Internet Explorer/IExplorer.exe" 
*wait nopath c:/program files/Internet Explorer/IExplorer.exe 
"c:/program files/PowerPro/dunhang.exe" 
*window close =c:/program files/speedup/speedup.exe 
 
A problem with this script is that, since a *wait executes in the background, you will not be able 
to run another script file (due to PowerPro restriction that script files cannot be run while another 
script file is doing a *wait).  Another approach which avoids this problems is to remove the *wait.  
Replace it by *Timer Start a, which starts a timer (say) a with a reset of (say) 2 seconds; the 
reset command should be 
Command: *script 
Action: if 
Parameter: (not visiblewindow "*internet explorer*") 
More:  *Timer stop a 

"c:/program files/PowerPro/dunhang.exe" 
*window close =c:/program files/speedup/speedup.exe 

This uses the ability of the *Script if to control the More Commands. 
 



Windows PowerPro Page 117 Version 3.7 

 

Running a Script from a File 
 

You can create a command script and store it in a file and the run the file with 
*Script  
RunFile 
c:\path\filename.txt 
If you specify a file name without a path, then the file is assumed to be in a subfolder scripts of 
the folder of the PowerPro configuration file.  If the file name has no extension, then .txt is used 
or .powerpro is used; PowerPro looks for both. 
 
You can also use 
runfile.filename(arg1,arg2) or .filename(arg1, arg2) 
to run filename.txt in the scripts folder; you access the arguments in the script with the function 
arg(n). 
 
Each line in filename.txt is a PowerPro command or Windows program/document to run. For 
example: 
 
c:\windows\notepad.exe 
wait visiblewindow *notepad* 
keys abc 
 
would run notepad, wait for a notepad window to be visible, and then send the keys abc. 
 
For example 
 
max=arg(1) 
if (arg(2)>max) 
   max=arg(2) 
if (arg(3)>max) 
  max=arg(3) 
quit (max) 
returns the maximum of three arguments.   
For example, 
 
if (arg(1)<=1) 
   quit(1) 
quit (.factorial(arg(1)-1)*arg(1)) 
 
return the factorial of its argument. 
 
Any line starting with a semi-colon is ignored and can be used as a comment.  Blanks at the 
start of a line are ignored and can be used to indent to show structure. 
 
If the file name of the program you want to run from a script contains blanks, put it in double 
quotes: 



Windows PowerPro Page 118 Version 3.7 

"c:\program files\editor\editme.exe"  param 
 
You can put a label on a line by preceding the label with an @ 
 
c:\windows\notepad.exe 
wait visiblewindow =notepad 
@loop *keys a{enter} 
       *script if (not ctrl) 
jump loop 
keys b 
 
This file starts notepad, waits till its window is visible, and then sends the letter a until the ctrl 
key is pressed.  The letter b is sent and the script file exists. 
 
You can tell PowerPro to process two lines as one by ending the first with a single quote then a 
plus  (‘+). 
 
You can include work directory information for a command by preceding it by the characters !` 
C:\windows\notepad.exe !`c:\mytext. 
starts notepad with work directory c:\mytext.  Also use this approach to enter format keywords 
for *Menu commands. 
 
You can try to determine how the a program is shown by ending the line with 
*hide   to hide the window 
*min  to minimize the window 
*max  to maximize the window 
*traymin to tray minimize the window 
(these options may not work with all programs) 
For example 
c:\windows\notepad.exe edme.txt !`d:\mydir *min 
starts notepad minimized on file edme.txt with starting folder d:\mydir. 
 
You can run other scripts by Runfile within a script file. 
 
Except for *wait sleep, you can only use *wait commands in the outermost script; if a script is 
called from another script, then the only type of *wait it can contain is a *wait sleep.   
 
You cannot put multiple commands on one line in a script file. 
 
In general, how do you put PowerPro commands into Script files? There are two cases: running 
Windows files/programs and running PowerPro asterisk commands (like*Menu or *Keys). 
 
For files and programs, the PowerPro command entry controls generally appear as 
Command: c:\program file\cccc\cccc.exe 
Show at Start Normal 
Parameters xxxx /switch 
Initial Dir c:\thedir 
 



Windows PowerPro Page 119 Version 3.7 

You enter this on one text line in a script file as 
 
"c:\program file\cccc\cccc.exe" xxxx /switch   !`c:\thedir 
 
Explanation:  put the command in double quotes, then a space, then the command parameters.  
If you need to specify an initial directory, put !` then the directory information.   You cannot 
specify show at start information (it is forced to be normal).  (The double quotes around the 
command are unneeded if the path does not contain spaces). 
 
For PowerPro asterisk (*) commands, the command entry controls will be something like 
Command *Menu 
Action:  Show 
Edit  mymenu 
Second Edit centerScreen 
 
This is entered in a script file as the line 
 
*Menu Show mymenu !`centerScreen 
 
A few commands (eg Keys) have no action; for them, just put the command followed by the edit 
info (e.g *Keys abc).  Most commands do _not_ have the second edit in which case the !` 
   and the following text are omitted. 
 
 
PowerPro has an an approach to importing and exporting command lists which works well with 
scripts.  When exporting, if you check "Export left command only"  Powerpro will export a file 
with one line for command list item which can be easily edited.  You can also import scripts 
using this format; to do so you must precede the command list items by 
[**name] 
where name is the command list name.  Note that two asterisks must precede the command list 
name.   
 
Note:  if labels or commands contains blanks, they must be enclosed in double quotes.  Also, 
PowerPro will automatically remove *Script when exporting these files and insert it when 
importing these files. 

 
 

 



Windows PowerPro Page 120 Version 3.7 

 

Working with Tray Icons from Other Programs 
 
Purpose 
You can use the *TrayIcon command to simulate mouse clicks on the tray icons from any other 
program.  You can also use this command to hide these tray icons and still access the 
commands by simulated mouse clicks. 
 
This lets you decide how to access tray icon functions and which tray icons should appear in 
the tray window on your taskbar. 
 
Configuration 
Before you can access a tray icon, you must train Windows PowerPro on how to access the 
icon. .  You have to train Windows PowerPro once for each icon you want to access. 
 
Once you have trained Windows PowerPro, you send mouse clicks to the icon with the 
following command: 
Command *TrayIcon 
Acton  click 
Parameters icon_name keystrokes 
click is one of leftclick (left click), leftdouble (left double click), etc. 
icon_name is the name you assigned to the icon when you trained Windows PowerPro; put it in 
quotes if it contains blanks. 
keystrokes is optional; if present, it is a set of keystrokes to send to a menu resulting from the 
click (if a normal window results from the click, use *Keys with multiple commands instead). 
 
You can also hide the tray icon with the command: 
Command *TrayIcon 
Action  hide 
Parameters icon_name  
You can still send mouse clicks to a hidden icon. 
 
Example 
Command *TrayIcon 
Action  leftclick 
Parameters modem {ad}{ad}{en} 
sends a left click to the tray icon named modem, and then sends two arrow downs and an enter 
to the resulting menu. 
 
If the icon_name is not found, you will normally get an error message.  Precede the icon name 
with ^ to avoid the error.  
Command *TrayIcon 
Action hide 
Parameters ^icon_name 
 

 Training PowerPro to Recognize Tray Icons from Other Programs 
 
To access tray icons from other programs, you must first train Windows PowerPro to recognize 
the hidden window and internal codes that this icon uses.  Follow these steps: 
 
1. Make sure the tray icon to be accessed is visible in your tray.  It is helpful to shut down 
other windows, but this is not necessary. 
2. Start the configuration dialog and activate the command entry controls for the command 
list, hot key, alarm, or timer that you are configuring.  Select the *TrayIcon command. 
3. Press the search button and select add from the resulting menu. 



Windows PowerPro Page 121 Version 3.7 

4 You will get a message box prompting you to left click on the tray icon.  Press OK on this 
message box and then left click on the tray icon. 
5. If Windows PowerPro is able to capture the information, you will get another message 
box reporting success and asking you to help confirm that the information was correctly 
captured.  Press OK and Windows PowerPro will simulate a right click on the icon as a test.   
6. If the right click test succeeds, Windows PowerPro will ask you to enter a name for the 
icon information.  This is the icon_name field used in the *Tray Icon command or selected from 
the drop down in the command wizard.  
 
If Windows PowerPro cannot capture the left click on the icon, or if the right click test is not 
successful, try again once or twice to ensure that this was not just a transient problem.  
 

Changing the Wallpaper with *Wallpaper 
 
Use *Wallpaper to change the wallpaper. You can also change the saver from the media dialog.   
 
Windows PowerPro allows you to use .jpeg and .jpg files as wallpaper. 
 
These are the *Wallpaper actions: 
Show  changes wallpaper to indicated file but does not store the file name 
Change changes paper to file in same folder; you can specify random or sequential 

change 
ChangeTo changes paper to indicated file 
Style  Enter center, tile, or stretch as parameter to set wallpaper style.  Stretch 

may not work on your system 
 
 

Virtual Desktops 
 
Purpose 
Use virtual desktops if you run many programs at the same time and want to reduce desktop 
clutter. A virtual desktop is a collection of windows which you show and switch-to as a group 
using the *Vdesk command.  Only windows on the active virtual desktop are visible. 
 
When you shutdown Windows PowerPro, all desktops are lost.  If you have a set of programs 
you always run as a group on a desktop, you can create a command list with those programs 
and then activate the desktop and these programs with the "NewFromList" or "ReplaceByList" 
actions or you can specify the initial contents of a desktop using the configuration Desktop tab.  
 
Configuration 
You define and switch-to a virtual desktop in two ways: by activating the built-in command 
*Vdesk or through a menu that you access by Shift+right-clicking anywhere on a Windows 
PowerPro button bar. 
 
Use the menu to switch desktops, create new desktops, lock/unlock windows on desktops, 
move windows between desktops, close and rename desktops.  
 
In addition to the menu, you can also use the *VDesk command to work with desktops, by 
associating this command with a button, menu item, hot key, and so on.  Use the action and 
parameter fields as follows: 



Windows PowerPro Page 122 Version 3.7 

 
Arrange Displays a window showing all desktops; see below for more information. 
Clear  Clears the selected virtual desktop. 
Consolidate  Move all windows to current desktop. 
ClearAllClose  Move all windows to current desktop and then closes them. 
Menu  Displays the virtual desktop menu. 
Next  Activates the next virtual desktop. 
Previous Activates the previous virtual desktop. 
MoveActive Moves active window to named desktop (which must already exist). 
MoveAutorun Moves last autorun match to named desktop (which must already exist) 
SwitchMenu Show a menu of desktops and windows; select one to activate it. 
ShowMenu Shows a menu of desktops and windows; select a window to move it to this 

desktop 
SwitchTo Switches to the indicated desktop. 
New  Creates a new desktop; you can specify its name. 
CreateOrSwitchTo Creates a new desktop named after a command list and runs the 

commands on the list to populate the desktop.  If the desktop already exists, 
switches to it. 

NewFromList Same as CreateOrSwitchTo 
ReplaceByList Clears the current desktop and renames it to the command list and runs the 

commands on the list to populate the desktop. 
 
Use *Vdesk MoveAutorun with autorun command lists to move windows of a specified type to a 
desktop when the windows first open. 
 
The command *Vdesk Arrange shows all nine potential desktops and allows you to drag/drop 
windows among desktops, create/delete desktops, and lock/unlock windows.  You can access a 
control menu by right clicking on the Arrange window. The active desktop name is shown in 
bold; the active (foreground) window is also shown in bold.  You can also double click on the list 
of windows in a desktop to close the Arrange dialog and switch to that desktop or double click 
on the name of a desktop to switch desktops without closing the Arrange window. If you work 
with fewer than nine desktops, you can change the arrange dialog's height (but not its width). 
 
Further Information 
 
You can have up to 9 active desktops.   
 
You can show the name of the current desktop as a button label. 
 
It is possible to show a different Windows PowerPro bar for each desktop.  Create new bars and 
start them with the desktop you want them to be associated with (use *Bar Show to show a bar). 
Make sure "All Vdesks" on the Bar Properties dialog is not checked. 
 
You can define a command which will display a menu which depends on the currently active 
virtual desktop: 
Command *Menu Show 
Parameter *desk 
will display the menu with the same name as the currently active virtual desktop. 
 



Windows PowerPro Page 123 Version 3.7 

Explanation of Virtual Desktop Menu 
 
The following items appear on the virtual desktop menu: 
 
List of Defined Desktops 
Select one of the desktop names on the menu to show the windows on that desktop. 
 
New Desktop 
Hides all the windows on the current desktop and creates a new one.  You can name the new 
desktop with the rename menu entry, if you want. 
 
Arrange 
Shows all nine potential desktops and allows you to drag/drop windows between desktops, 
create/delete desktops, rename desktops, lock windows on all desktops. 
 
Unlock 
Shows a list of locked windows.  Selecting one unlocks it.  The menu item is only enabled when 
there are locked windows. 
 
Lock 
Shows a list of windows on the current desktop.  Selecting a window locks it.  A locked window 
appears on all desktops. The menu item is only enabled when there are windows on the 
desktop which can be locked.  You can also pre-specify locked windows using the "Show on All 
Virtual Desktops" edit box on the Virutal Desktop Setup dialog. 
 
Remove From Desktop 
Shows a list of windows.  Selecting one removes it from the current desktop.  
 
Move/Copy from this 
Shows list of of windows.  Selecting one causes menu of desktops to be shown; selecting a 
desktop from this list moves the selected window to that desktop (hold down Ctrl to copy the 
window).  Only enabled if there is a windows which can be moved and there is more than one 
desktop. 
 
Clear this Desktop 
Closes all windows on the current desktop. If the windows only appear on this desktop, the 
corresponding programs are closed. 
 
Clear All Desktops and Close 
Moves all windows to the current desktop and then close all windows. 
 
Move all Windows to Current Desktop 
Moves all windows to the current desktop and closes other desktops. 
 
Clear and relaunch from list 
Closes all windows on the current desktop and restarts the programs in the command list of the 
same name.  If the windows only appear on this desktop, the corresponding programs are 
closed. 
 



Windows PowerPro Page 124 Version 3.7 

Close and move windows to 
Closes current desktop and moves its windows to selected desktop.  Only enabled if there is 
another desktop besides the current one. 
 
Rename Desktop 
Allows you to assign new name to desktop while it is active. 
 
See All/Move/Copy to this 
Shows the names and window captions of other desktops and allows you to copy/move a 
window to the current desktop.  
 
The active desktop name is show in round parentheses, eg (mydesk); other desktop names are 
shown in angle brackets, eg <otherdesk>. Select a window name to move that window to the 
current desktop or hold down the Ctrl key while selecting a window name to copy it.   
 
See All/Switch To 
Shows the names and window captions of other desktops and allows you to switch to another 
desktop and activate a window on that desktop. 
 
The active desktop name is show in round parentheses, eg (mydesk); other desktop names are 
shown in angle brackets, eg <otherdesk>.  Select a desktop name to switch to that desktop 
and activate the last window which was active.  Select a window name to switch to that desktop 
and activate that window. 
 
Start Desktop From List 
If a desktop of the specified names exists, switches to it; otherwise creates a new desktop and 
runs command list of same name to populate the desktop. 
 

Virtual Desktop Setup 
 
Use Virtual Desktop Setup dialog which you access from the Setup dialog to specify 
characteristics of virtual desktops.  
 
Normally, Windows PowerPro only shows windows from the current virtual desktop on the 
taskbar.  If you prefer, you can arrange to show all windows on the taskbar and use the taskbar 
to switch among desktops by checking the "Show all windows from virtual desktops on task bar" 
Shutdown and restart PowerPro after changing this option. 
 
 
If you activate a window which is on a hidden desktop (eg via tray icon), Windows PowerPro 
can be configured to show and switch to the hidden desktop.  If you want this feature, check 
"Show Virtual Desktop if any of its windows is activated".  
 
You can specify that PowerPro should move a window activated which is activated by the 
"switch to if active feature" by checking "Switch to if Active moves window to current desktop".  If 
you leave this unchecked, then the windows will be copied to the current desktop as well as 
remaining on hidden ones. 
 



Windows PowerPro Page 125 Version 3.7 

If Rerun script with desktop name each time desktop is activated is checked, each time you 
switch to a virtual desktop which is already running,  Windows PowerPro will execute the script 
of the same name for the desktop.   
 
Check Press bar button with *VDesk SwitchTo xxx as command when xxx is active to have 
PowerPro show a button corresponding to the active desktop as pressed.  Assign the command 
*Vdesk SwitchTo xxx *Vdesk NewFromList xxx to any mouse click on a button to have that 
button shown as pressed whenever the virtual desktop named xxx is active. You can set 
checkboxes to use this approach to show the icon only from the button corresponding to the 
active desktop or the own color only from the button for the active desktop. 
 
 
You can specify the name of a command list to be run after each time you switch to a new 
desktop.  The command list can access the new desktop name, if desired, with *Script if 
(vdeskname=="string") or *Script assign v desktop.  This list is not run when PowerPro starts; 
use a startup up scheduled event to run the list at startup if you want to do this. 
 
You can specify a caption list of windows to be locked on all desktops.  
 

Initializing Desktops Using the Configuration Dialog 
Use the Desktop tab on the configuration dialog to initialize virtual desktops.  You can specify an 
initial name, an initial command list to populate the desktop, a command list to be shown as a 
bar for the desktop, and a wallpaper file for the desktop. 
 
If you specify a name or an initial command list, the desktop will be created and the command 
list (if specified) will be run to initially populate the desktop.  This only happens when PowerPro 
starts. 
 
If you specify a command list to be shown as a bar, the bar will be shown each time the desktop 
is activated.  Make sure "Show as bar" is not checked, and make sure "Show on all Vdesks" of 
Command list | Properties is not checked. 
 
If you specify a wallpaper file, each time you switch to the desktop, PowerPro will set the 
wallpaper to the specified file.  Use a .bmp file for best performance. 
If you specify a wallpaper file, each time you switch to the desktop, PowerPro will set the 
wallpaper to the specified file.  Use a .bmp file for best performance. 
 



Windows PowerPro Page 126 Version 3.7 

 

Wait Command 
 
Use the wait command in multiple commands or in when executing all commands on a menu in 
order to wait for some condition before executing some of the commands.   
 
Except for *wait sleep, PowerPro can still be used while a wait is underway.  For *wait sleep, 
PowerPro will be unresponsive until the wait ends.  However, *wait sleep has two advantages:  
it can be used with short waits, and can be in any script (other waits are restricted to the 
outermost script and cannot be used in a script called by another script). 
 
 
Wait for m milliseconds: 
Command: *wait  
Parameter: sleep m 
where m is any number waits for that number of milliseconds.  PowerPro will be unresponsive 
during the wait.  Unlike all other *wait commands, *wait sleep can be used an any script. 
 
Wait for n seconds: 
Command: *wait 
Parameter: n 
where n is any number waits for that number of seconds.  
Wait until command is ready for input: 
Command: *wait 
Parameter: ready caption_list  
The caption_list is optional.  If omitted, PowerPro waits until the last file launched by PowerPro 
is ready for input up to a maximum of 10 seconds.  If the caption_list is present, PowerPro waits 
until any window selected by the caption list is ready to accept input up to a maximum of 10 
seconds.  
 
Wait until command exits 
Command: *wait 
Parameter: done captionlist 
The caption_list is optional.  If omitted, PowerPro waits until the last file launched by PowerPro 
exits.  If the caption_list is present, then a windows which matches the list must be visible, and 
PowerPro waits until any program with a window which matches the list exits. 
 
Wait for modem to be connected (Dial-Up Networking RAS connection only): 
Command: *wait 
Parameter: modem 
You can also put a number ahead of the word modem; PowerPro will wait for either that number 
of seconds, or until the modem is connected, whichever is smaller.  For example, "8 modem" 
waits for up to 8 seconds or until the modem is connected.  
 
Wait for modem to be disconnected (Dial-Up Networking RAS connection only): 
Command: *wait 
Parameter: nomodem 
 
Wait until window with specified caption is active (foreground): 



Windows PowerPro Page 127 Version 3.7 

Command: *wait 
Parameter: active xxx 
waits until any program with caption xxx is active (foreground).  Put caption in double quotes if it 
contains blanks.  Use xxx* for captions starting with xxx, *yyy with captions ending with yyy, and 
*zzz* for captions containing zzz anywhere.  You can use multiple captions separated by 
commas.  Use =progname for any window from program with exe file name progname (no path, 
no .exe).  You can put a number n ahead of the caption to limit wait to n seconds. .   
 
Wait until window with specified caption is not active (foreground): 
Command: *wait 
Parameter: noactive xxx 
waits until any program with caption xxx is not active.  Put caption in double quotes if it contains 
blanks.  Use xxx* for captions starting with xxx, and *yyy with captions ending with yyy and 
*zzz* for captions containing zzz anywhere.  You can use multiple captions separated by 
commas. Use =progname for any window from program with exe file name progname (no path, 
no .exe).You can put a number n ahead of the caption to limit wait to n seconds.  
 
Wait until window with specified caption is running: 
Command: *wait 
Parameter: window  xxx 
waits until any program with caption xxx is running.  Put caption in double quotes if it contains 
blanks.  Use xxx* for captions starting with xxx, *yyy with captions ending with yyy, and *zzz* for 
captions containing zzz anywhere.  You can use multiple captions separated by commas.  Use 
=progname for any window from program with exe file name progname (no path, no .exe).  You 
can put a number n ahead of the caption to limit wait to n seconds. .  (You can use caption 
instead of window).  Use visiblewindow to ensure the window is visible. 
 
Wait until window with specified caption exits: 
Command: *wait 
Parameter: nowindow xxx 
waits until any program with caption xxx exits.  Put caption in double quotes if it contains blanks.  
Use xxx* for captions starting with xxx, and *yyy with captions ending with yyy and *zzz* for 
captions containing zzz anywhere.  You can use multiple captions separated by commas. Use 
=progname for any window from program with exe file name progname (no path, no .exe).You 
can put a number n ahead of the caption to limit wait to n seconds.  (You can use nocaption 
instead of nowindow). Use novisiblewindow to omit invisible windows. 
 
Wait until command with specified exe path is running: 
Command: *wait 
Parameter: path c:\path\prog.exe 
waits until any program executed from c:\path\prog.exe is running.  Put path in double quotes if 
it contains blanks. You can put a number n ahead of the path to limit wait to n seconds. 
 
Wait until command with specified exe path exits: 
Command: *wait 
Parameter: nopath c:\path\prog.exe 
waits until any program executed from c:\path\prog.exe exits.  Put path in double quotes if it 
contains blanks. You can put a number n ahead of the path to limit wait to n seconds. 
 
Wait with a message box and a count down timer: 



Windows PowerPro Page 128 Version 3.7 

Command: *wait 
Parameter: message n text 
displays a message box containing text and a countdown timer which starts at n seconds.  If n 
reaches 0 or the "Start Now" button on the message box is pressed, then the wait ends and the 
next command is run;  if the cancel button is pressed, the wait ends and all following commands 
are ignored.  The position of the message box is set by the "Screen position for alarm message 
windows" on the time setup dialog. 
 
Wait for mouse or keyboard activity 
Command: *wait 
Parameter: activity 
Waits until mouse or keyboard activity.  Always waits at least 3 seconds to ignore activity 
associated with launching the command. 
 
Wait for alt, ctrl, or shift key 
Use ctrl, alt, or shift as command parameter in *wait command to wait until this key is pressed.  
Use noshift, noalt, noctrl to wait until the key is not pressed.  You can optionally follow any of 
these by a number n of seconds to limit the wait to that time. 
 
 
If you reconfigure Windows PowerPro, all outstanding waits will be ended. 
 
You can have at most eight outstanding waits. 
 
You can terminate all outstanding waits by running the command: 
Command: *wait 
Parameter: quit 
 
 

Manipulating Windows of Running Programs 
 
Purpose 
Use the *Window command to ask Windows PowerPro to close, minimize, tray minimize, rollup 
to caption and perform many other actions with the windows on your system.  You can specify 
the windows to be controlled by selecting the active window, the window under the mouse, a 
window from a menu of active windows that Windows PowerPro shows, a list of window 
captions, or all windows on your system. 
 
Configuration 
The command has this format: 
Command  *Window 
Action   action 
Paramter  windowID 
 
The action specifies what to do.  The windowID species which windows to perform the action 
on. 
 
Examples 
 



Windows PowerPro Page 129 Version 3.7 

Command  *Window 
Parameter  min active 
minimizes the active window. 
 
Command  *Window 
Parameter  rollup menu 
displays a menu of active windows; the selected one is rolled up to the caption. 
 
Command  *Window 
Parameter  show menu hidden 
displays a menu of active windows including hidden windows; the selected one is shown and 
activated. 
 
Command  *Window 
Parameter  close all 
closes all windows on your desktop. 
 
Command  * Window 
Parameter  Posotion 10 30 100 200 autorun 
positions lasts window selected on autorun menu. 
 
Command  *Window 
Parameter  minmemory "*Netscape,*Internet Explorer" 
swaps Netscape or Internet Explorer out to disk (NT only). 

 
Specifying the Action for *Window Command 

 
Following are the possible values for the action of the *Window command: 
 
close   closes window 
closeforce  forces the window to close; you may lose unsaved information 
min   minimizes the window 
max   maximizes the window 
normal   displays as non-minimized, non-maximized 
move   move the window by moving mouse; click any mouse button to stop 
move 
size   size the window by moving mouse; click any mouse button to stop size 
hide   makes window invisible 
hideshow makes window invisible if visible, shows if invisible; take care when 

applying to multiple windows as there are many windows which should 
normally remain invisible 

ontop   displays always on top (ontop is one word) 
nottop   removes always on top setting (nottop is one word) 
topnottop  reverses always on top setting (nottop is one word) 
show   activates the window and shows it if hidden 
back   sends window to bottom of stack of displayed windows 
backshow  sends window to back if it is foremost; activates if it is not 



Windows PowerPro Page 130 Version 3.7 

center   centers within full screen 
rollup   rolls up the window to just caption; shows if it is already rolled-up 
maxnormal  maximizes normal window; makes maximized window normal 
minrestore  restores minimized window; minimizes otherwise  
traymin  minimizes window to tray 
automin  minimizes window to tray if window matches autotraymin on Window 
Control tab; ordinary minimize otherwise 
minmemory  setting memory working set (NT, W2K, XP only).  
SetPriority set process prioirity of selected window; precede caption by idle (lowest), 

below, normal, above, high (highest) 
Position x y w h sets a window position 
Trans x  make window transparent (W2K, XP only) 
PostMessage m w l Does PostMessage(h, m, w, l) where h is selected window 
SendMessage m w l Does SendMessage(h, m, w, l) where h is selected window,;variable 
SendMessage is set to result of the SendMessage call 
For the Position command, you must type four numbers before the target window.  The four 
numbers provide the window horizontal and vertical position (positive or negative) and the 
window width and height.  You can capture these numbers from an active window using the find 
button.  Alternatively, you can replace the four numbers by center (to center), wmax to 
maximize width, or hmax to maximize height.  You can use = for any of the four to keep the 
current value.  You can precede the number by a plus sign to set relative to current position: 
*Window Position +-50 = +-100 = active 
moves 50 positions to the left reduces the width of the active window by 100 pixels. 
*Window Position = = +50 +50 = under 
increase width and height of window under mouse by 50 pixels. 
 
For the Trans command, precede the window target by an integer -255 to 255; the larger the 
number, the more transparent the window.  Zero means not transparent.  Negative numbers 
reverse the transparency each time the command is used. 
 
For PostMessage and SendMessage you can use the string wm_command, wm_app, or 
wm_user to represent the corresponding message id.  You can also use wm_user+n, where n is 
a number.  You can enter a hexadecimal number by preceding it with 0x, eg 0x1f0a. 
 
For example, to use SendMessage with WinAmp, use *Window SendMessage and 
wm_command 40046 0 c=winamp v1.x 
 to pause winamp  
wm_user 1 105 c=winamp v1.x 
to set variable SendMessage to length of current track 
See 
http://www.winamp.com/nsdn/winamp2x/dev/sdk/api.jhtml 
for details. 
 
If you use the MinMemory command, you can optionally follow the WindowId with two decimal 
integers giving the minimumum and maximum working set sizes in bytes.  The virtual memory 
manager attempts to keep at least the minimum working set size resident in the process 
whenever the process is active and to keep no more than the maximum memory resident in the 
process whenever the process is active and memory is in short supply.  If you omit these 
values, or if you specify -1 for both,  the function temporarily trims the working set of the 
specified process to zero. This essentially swaps the process out of physical RAM memory.  



Windows PowerPro Page 131 Version 3.7 

 

Specifying the WindowID for the*Window Command 
 
Select one of the following options for the WindowID of the *Window command: 
 

active Selects the active window. 
* Selects the active window. 
autorun Last window matched by autorun menu. 
activebar Window corresponding to last active bar button pushed. 
under Selects the window under the mouse.  For applications which use the 

Multiple Document Interface, the commands close, min, max, rollup will 
operate on the MDI child only; put Parent after under to avoid this and 
ensure the command always runs on the parent window. 

menu Displays a menu of active windows; select one for the action.  Put hidden 
after menu to include hidden and tray minimized windows. Put traymin after 
menu to include tray-minimized windows. If the *Window menu command is 
included in a Windows PowerPro menu, the generated menu will be 
embedded in the outer menu.  To ensure all items appear on screen you 
could put the *Window command as the sole entry in a submenu.  Or to 
activate the *Window command when the menu item is clicked on, put 
noembed in lower case in the work directory of the *Window command  . 

all Selects all visible windows, including minimized windows. 
window_list Selects the windows specified in the list.  Enter one or more window 

captions, separated by commas.  Enter xxx* for captions starting with xxx,  
*yyy for captions ending in yyy, and *zzz* for captions containing zzz 
anywhere.  Or you can enter =exename to select all windows shown by the 
program with file name exename (you must only enter the file name:  not the 
path and not the .exe extension). Put ~ at the start of the window list to avoid 
an error message if no matching window is found.  Put the window_list in 
double quotation marks if it contains blanks.  Example:  "*Notepad,*Internet 
Explorer, =calc" selects notepad windows, Internet Explorer windows, and 
Calculator windows. 
 
You can also use a window handles or list of window handles separated by 
commas in the window list. 

 
 

Window Handles 

 
Each  window is assigned a unique number by the Windows operating system.  This number is 
called the window handle.  PowerPro lets you retrieve window handles and use the *Window 
and other commands to access windows by their handles.   
 
Window handles are useful when you want to access one out a series of windows which share 
the same exename or the same caption. 
 
Following are ways to retrieve window handles: 
 
window("firstwindow",caption_list) returns handle of  the first window found which matches 

caption list.  For example, "firstwindow" window "active" 



Windows PowerPro Page 132 Version 3.7 

returns the handle of the active window. 
window("visiblewindow", 
caption_list) 

returns string of window handles of visible windows 
matching caption list.  The window handles are separate 
by blanks.  You can use the word operator to extract 
them, as in 
list = "visiblewindow" window "=exename" 
for (j=1;;j=j+1) 
 handle =list word j 
 if (handle == "‘’) 
  break 
 ; Process the handle 
endfor 

window("anywindow",caption_list) returns string of window handles of visible and invisible 
windows matching caption list.  The window handles are 
separate by blanks.  You can use the word operator to 
extract them. 

LastActiveHandle Variable which PowerPro sets to the handle of the last 
window selected by an active button. 

LastAutorunHandle Variable which PowerPro sets to the handle of the last 
window matched by an autorun command list. 

 
Once you have a window handle, you can use it in any command or context which requires 
captions list: in a *window command, in a target list of a hot key, in *format ContextIf, and so on.  
For example,  
 
*Window Close &(MyHandle) 
would close the window whose handle is in MyHandle. 
For example,  
*Format Context  ~&(hWnd) 
would include the following menu items if any window but the one in variable hWnd was active. 

 
 
 



Windows PowerPro Page 133 Version 3.7 

Keyboard Macros 
 
Purpose 
Keyboard macros let you replace one set of typed characters by others.  You can also use 
keyboard macros to run Windows programs or to execute Windows PowerPro Windows 
configuration features or built-in commands. 
 
For example, you could define .me to be replaced with Your Name.  Or you could define Alt-tm 
to minimize the current window. 
 
Configuration 
To define a set of keyboard macros, you need to do two things:  define the macros and define 
the macro signal character. 
 
You define the macros and the corresponding actions by creating a command list.  Enter the 
macro as the item name and enter the macro command as the corresponding left command.  
Use only letters, digits, and spaces in the item name.  Use the *Keys command to send 
keystrokes if you want to define a macro abbreviation for the corresponding keystrokes. 
 
After defining the macros, you need to define a hot key character which is used to signal that a 
macro may follow. You do this by defining any hot key and type in the command name *Macro 
into the command entry edit box.   Put the name of the command list with the macros in the 
parameter edit box of the command. 
 
For example, suppose you define a command list mymacros with these four entries: 
 
Item Name  me 
Item Command *Keys 
Item Parameters yourname@yourdomain.com 
 
Item Name  new 
Item Command *Keys 
Item Parameters %fn 
 
Item Name  sq 
Item Command *Keys 
Item Parameters {sp}{ba}² 
 
 
Item Name  xp 
Item Command c:\windows\explorer.exe 
Item Parameters  
 
Also suppose that the period is defined as a hot key as follows 
Hot Key   . 
Hot Key Command  *Macro 
Hot Key Parameters  mymacros 
 



Windows PowerPro Page 134 Version 3.7 

When you type .me, Windows PowerPro would replace the .me by 
yourname@yourdomain.com.  Similarly, .new would be replaced by Alt-fn, and .sq would be 
replaced by the superscript 2 (²).  Finally, typing .xp would cause Windows Explorer to be 
started. 
 
If you type period followed by any other sequence of characters, nothing will happen – the typed 
characters will not be changed. 
 
Further Information 
 
Be careful when you define macros:  Windows PowerPro will execute the shortest macro that 
applies.  For example, if you define one macro ab and another one called abc, then the abc 
macro would never be executed since the ab macro would also be matched first.  To help avoid 
this, you can put spaces in macros, including spaces at the end.  The space then has to be 
typed for the macro to be executed. 
 
You can have as many combinations of macro signal characters and menu tables for macros as 
you want.   
 
You can use program-specific hot keys to limit macro expansion to certain windows or to avoid 
checking for a macro with certain windows.  
 
The *Macro command can only be used with hot keys.  You will get an error message if you use 
it in any other context (eg as a button command). 
 

Favorite Folders and File/Open Save Dialogs 
 
 

PowerPro can help you maintain and use lists of favorite folders for standard open/save dialogs.  
You can manually maintain a list of favorite folders, you can have PowerPro capture folders as 
you use them in open/save dialogs, and you can combine these two approaches to have an 
integrated list of manually set favorite folders and recently used favorite folders. 
 
You can display favorite folders in a menu or a bar (or both); see bottom of this help topic for 
more on bars. 
 
MS Office does not use standard open/save dialogs.  PowerPro can recognize these dialogs and 
send favorite folders to them for your favorite list, but it cannot capture the folder used from these 
dialogs. 
 
If you are not using English Windows, you must set the letter beside "Folder" on advanced setup 
to the underlined letter in the title beside the file edit box on your open/save dialogs. 
 
Display Favorite Folders in a Menu 
 
To have PowerPro track folders as you select them in standard file/open save dialogs, check 
"Combined Menu" or "Separate Menu" (or both) on the configuration setup tab.  For combined 
menu, PowerPro creates a file called c:\program files\powerpro\favfolder\_any.txt and places an 
entry in this file for each folder you access.  For separate menu, PowerPro creates a separate file 
in the same folder named after the .exe file of the program with the open/save dialog; for 
example, for MS Wordpad, the file is called wordpad.txt since the exe file name is wordpad.exe. 



Windows PowerPro Page 135 Version 3.7 

 
To view the resulting folders in a menu, assign the command *Menu Favfolder to a hot key or bar 
button and activate the command when the open/save dialog is open.  A menu will be displayed 
of favorite folders; select one to send it to the dialog.  If you have checked both combined and 
separate, the menu will have a column for combined recent folders and a separate column for 
favorite folders from the active program. 
 
To manually add entries to the menu which will always appear, edit the file and add a line "sep" 
(for horizontal separator) or "colsep" (for new column) to the end of the file.  Then list your folders 
on separate lines after this entry. You can precede file folder paths by myname= to have 
"myname" to appear in the menu to represent the folder path.  You can edit either the _any.txt file 
or the .txt file for a specific program, or both. 
 
To use a menu of only manually entered files, make sure the "Combined Menu" and "Separate 
Menu" checkboxes are unchecked on the setup tab.  Edit the files for manual entry.  Omit the sep 
or colsep at the start. 
 
The *Menu Favfolder command is equivalent to the command *Keys {to folder}{filemenu 
favfolder\_any.txt;*.txt}.  You can use variations of these commands for greater control of the 
menu layout and contents. 
 
Display Favorite Folder on a Bar 
 
To track folders as you use them for display on a bar, start by checking "Shortcuts" on the setup 
tab.  This causes PowerPro to create a shortcut in c:\program files\powerpro\favfolder\_anyshort 
folder for each folder as you access it.  The shortcut command will cause PowerPro to run *Keys 
{to folder}c:\path which is used to set the folder.   
 
Then you need to create a bar to display these shortcuts. 
 
To do so, create a new command list and make sure you check "Autoshow as bar".  Set 
Properties as follows:  check tool tips, set max text to 32, set icons to none, check vertical bar 
(not vertical text), check bar size from sum of buttons, set position to "to right of active window".  
Set the edit "Use this folder …" at the bottom of properties to c:\program 
files\powerpro\favfolder\_anyshort (or change as appropriate if you installed PowerPro in another 
folder). Check "Show text" and "Auto-refresh".  Then create a single entry in command list for the 
bar 
*Format 
Context 
filedialog 
This will cause a vertical bar to appear beside open/save dialogs when you use them with a list of 
recent folders; press a button to copy the folder to the dialog. 
 
To add manually set folders to the bar, create command list entries after the *Format Context with 
the left command *Keys {to folder}c:\path. 
 
If want a bar with only manually entries, uncheck "Shortcuts" on setup tab or leave the "Use this 
folder…" edit box on Properties blank. 
 
Of course, you can use other settings on Properties to get a different look for the bar. 

 



Windows PowerPro Page 136 Version 3.7 

 

Windows PowerPro Command Line 
 
Windows PowerPro normally uses the configuration file pproconf.pcf found in the same folder 
as the Windows PowerPro .exe file. 
 
You can use a different file name or a different folder by putting the path to the configuration file 
on the Windows PowerPro command line.  If the configuration file is in the same folder as the 
.exe, omit the path.  For example: 
 
"c:\program files\PowerPro\PowerPro.exe" "C:\My Documents\PowerPro\PowerPro.pcf" 
 
If you use a shortcut to start Windows PowerPro, the command line can be found in the shortcut 
properties.  You must put double quotes around file paths which contain blanks. 
 
You can make the folder depend on the current user by putting a % in the path to the 
configuration file; the % will be replaced by the current user name.  For example, if ralph was 
signed on: 
"C:\My Documents\PowerPro\%\PowerPro.pcf" 
would be interpreted by PowerPro as:  
"C:\My Documents\PowerPro\ralph\PowerPro.pcf" 
 
As well as pcf files, Windows PowerPro puts all files which it can change into this folder:  the 
timer log, alarm log, clip folder, tray icon info, saved desktop icon positions, saved explorer 
windows (from explorer tracking option).  So if you want to move your current configuration and 
other data files from the Windows PowerPro folder, you must move all .pcf files, all .iconpos 
files, all .timerlog files, all .alarmlog files and the explorer.windows file.  
 
You can also use the command line to set flags at start up.  Precede the pcf file (if present) by -
fn, where n is the flag number to set.  The letter f must be in lower case.  Repeat -fn to set 
multiple flags.  For example, the following sets flag 6 with the standard pcf file: 
 
"c:\program files\PowerPro\PowerPro.exe" -f6 
 
You can also run built-in (*) commands from a command line.  This could be used to execute 
PowerPro commands from shortcuts or batch command files. 
 
PowerPro must already be running. Type the built-in command, action, and parameters on the 
command line.  For example 
 
C:\program files\PowerPro\PowerPro.exe *Menu Show MyMenu 
shows menu MyMenu from the running PowerPro program.  
 



Windows PowerPro Page 137 Version 3.7 

Information for Stiletto Users 
 
 
PowerPro is not backwards compatible with Stiletto.  You will need to manually convert your 
configuration.  



Windows PowerPro Page 138 Version 3.7 

Purchasing PowerPro 
 
The 32 bit version of Windows PowerPro is freeware.   



Windows PowerPro Page 139 Version 3.7 

 

Frequently Asked Questions (with Answers) 
 
Where is my configuration stored?  How do I back it up?  How do I keep my configuration 
when upgrading? 
The configuration is stored in file Pproconf.pcf.  Take a backup copy of this file to save your 
configuration.  Installation zips of Windows PowerPro do not include a Pproconf.pcf file so they 
do not overwrite any existing configuration when installed. 
 
What are all the files in the Windows PowerPro folder?  Which can I delete? 
See filelist.txt in the folder for an explanation.  In addition, Windows PowerPro creates  
 
Where is my registration code stored?  Do I have to re-enter it for each upgrade? 
The registration code is stored in the registry.  Windows PowerPro automatically reads it from 
there.  There is no need to re-enter when upgrading. 
 
How can I start many Explorer windows at the same time?  How can I set the folder that 
Explorer starts with? 
To start many windows from Explorer (or any other program), you much uncheck "Switch to If 
Active" at the bottom of the command entry controls for each button or menu item which is to 
start the command.  To learn how to use Explorer to start at any folder, see the file tips.txt that 
Microsoft includes in your Windows directory.  Put the command parameters described there 
into the Windows PowerPro Parameters edit box. 
 
For win95 and NT4, what is the best way to show a menu by right-clicking the desktop? 
If you use the menu setup tab to set a desktop menu, Windows PowerPro will attempt to show 
both the Windows PowerPro menu you set and the Windows desktop or desktop icon context 
menu.  This may not always work well;  eg in NT 4, one of the menus may not close properly. 
 
Instead of using the menu setup tab, create a right-desk hot key which executes a *Show Menu 
for your desktop menu.  Include the following command in your menu: 
Item Name: Context 
Command  *Mouse 
Parameter  RightClick 
If you click your mouse anywhere on the desktop, only the Windows PowerPro menu will be 
shown.  To access the Windows context menu for the item under the mouse, select the Context 
command. 
 
You may also want to experiment with right-hold hot keys, chord left+right hot keys, and middle 
mouse hot keys. 
 
How do I use middle mouse button to send left double click?  What else can I do with the 
middle mouse button? 
To send middle double click, attachew the command *Mouse leftdouble to the middle anywhere 
hotkey. 
 
The middle mouse button can provide many other functions with Windows PowerPro: 
 
You can attach hot keys to it: for example, a mouse-all hot key and a mouse-hold hot key.  Use 
these hot keys for direct commands, like sending a left double click with *Mouse, or for menus, 



Windows PowerPro Page 140 Version 3.7 

such as menu of send key commands to send common shortcut keys or simulate picking menu 
entries. 
 
In addition to the hot key, you can also use the middle mouse for either scrolling or for moving a 
window by setting the option on the special config tab. 
 
How can I activate programs which are not files, such as printers or control panel 
applets? 
Use Explorer to create shortcuts to these special programs and then run the shortcuts from 
Windows PowerPro.  You can create a folder of shortcuts to all your printers or other special 
programs, and display them all as a menu using *Menu Folder. 
 
How do I create a bar in the caption so it looks like the icons of the bar are part of the 
caption? 
On the Properties dialgo for the commandlist of the bar, set the colors to the caption colors and 
uncheck the Border and Sizing checkboxes. 



Windows PowerPro Page 141 Version 3.7 

Power and Flexibility of PowerPro 
 
Windows PowerPro gives you the power to control your system and how you access programs 
because it allows you to choose the combination of how to activate and what to activate.  
 
The following table lists all the techniques for activation and all the things you can activate. You 
can combine any entry from the first column with any entry from the second column. 
 

How to Activate What to Activate 
Button Bars 

• left, middle, right click  
• keyboard access to bar  

Menu 
• pick item and dismiss menu  
• show all files in folder and run one  

Tray Icon 
• left, middle, right click  

Hot Key 
• alt, ctrl, win plus any key  
• tap ctrl, alt, shift, win, caps lock  
• specified key (like ;) then any key  
• can depend on active program  

Keyboard Macros 
• any string of characters  

Mouse Actions (any mouse button) 
• click window  
• click desktop  
• click caption  
• click left or right of caption  
• click system, min, or close box  
• press and hold mouse button  
• short horizontal or vertical drag  
• horizontal or vertical stroke  
• move mouse to screen corner  
• bump edge of screen  
• chord two mouse buttons  
• can depend on active program  

When A Specified Window First Appears 
• based on caption or exe name  

At a Scheduled Time 
• any time/date with repeat interval  
• after system idle for specified time  
• at PowerPro start up  

Based on a Timer 
• timer start or stop  
• after a countdown  

Run any program, shortcut, or document  
• specify parameters  
• specify keys to send at start  
• specify window configuration at start  
• browse files and select file to run  

Virtual desktop 
• create new desktop  
• switch to existing desktop  
• drag/drop windows between desktops  

Control any Window on your Desktop 
• select by caption, or under mouse, or all 

windows, or from menu of active windows 
• select main window or MDI window  
• activate, close  
• topmost, not topmost  
• hide, show, minimize, maximize, normal  
• minimize to the tray  
• rollup so only caption is visible  
• send to back (underneath all windows)  

Show a Menu 
• pre-built with optional submenus  
• portions shown can depend on active 

program  
• show Start Menu at any location 

Run a Script of Many Commands 
• script can contain any command in this 

column  
• program logic with flags, variables, if, 

jump, wait  
Work with Tray Icons of Other Programs 

• simulate left, middle, or right click  
• hide icon  

Show Contents of Folder as a Menu 
• select a file and run it or show its 

properties  
• access special folders like desktop, start 

menu  
Send Keystrokes to a Running Program 



Windows PowerPro Page 142 Version 3.7 

• at a repeating interval  
 

• insert text  
• control the program by sending Alt+ or 

Ctrl+ keys  
Send Mouse Actions to Running Program 
Control Look of Your Desktop 

• change wallpaper/saver  
• change any sound  
• all changes can be random, sequential, or 

to specific file  
• hide/show desktop icons or task bar 
• save and restore desktop icon positions  

Shut Down or Restart Windows 
 

 



Windows PowerPro Page 143 Version 3.7 

 

Demonstrations and Samples 
 
There is a demonstration configuration of PowerPro which illustrates many features. To start 
this demo, Ctrl-right click on any bar, select "Change configuration" menu item, and then select 
"demo" from the resulting submenu. 
 
The demo bar will appear in the top left of your screen.  Click on one of the following topics for 
more information: 
 
When you are finished with the demo, ctrl-right click on the bar and select "Change 
configuration" menu item, and then select "pproconf" from the resulting submenu to restart your 
configuration.  
 
Since the location of command files will be different for each computer, many of the 
demonstrations use standard Windows commands like notepad.exe or internal commands like 
*Message.  Or course, you can replace these by any file or command on your system when you 
use the feature. 

Demonstration of Menus and Context Menus 
 
Left click the menu button to see the command list MenuSample displayed as a menu.  This 
menu illustrates submenus and context menus.  You will see on the command list MenuSample 
(ctrl-right click bar) that the Paper/Saver submenu is started by *Format StartSubmenu and 
ended by *Format EndSubmenu in the command list.  The context submenu starts with *Format 
Context *NotePad* and ends with *Format EndContext.  The *Keys and *Message commands 
between these two commands will only be displayed if Notepad is the active window.  You can 
start notepad with the NotePad button on the bar.  Press the menu button when notepad is 
running and active and note that these entries appear.  Try again with notepad running but not 
active (eg click on desktop) and you will see a different menu. 
 
You can also display the MenuSample command list as a menu by pressing key ctrl+alt+m or by 
shift+ctrl+right clicking the mouse.  See the Key/Mouse tab of the configuration dialog and note 
the *Show Menu command associated with both these hot keys.  This illustrates that the menu 
structure (ie the command list) is separate from how it a menu is shown (clicking a button or 
using a hot key, for example) 
 
Right click the menu button to see the SubbarMenu displayed.  Selecting an entry displays a 
different subbar; click here for more information. 
 
Middle click (shift+left click for two button mouse) the Menu button to see the WindowMenu 
which displays active programs and allows you to switch to, close, on top, or not on top the 
windows.  Access the configuration dialog with ctrl-right click on the bar, and note command list 
WindowMenu.  See how the *Window commands are placed within *Format 
StartSubmenu/*Format EndSubmenu commands so that the lists of active windows do not 
follow each other on the main menu.  
 
You can activate the snippets menu by using the hot key alt+ctrl+s. Right click on the system 
icon in the upper left caption of any window to see the ControlWin menu.    

 

Demonstration of Subbars and Manually Shown Bars 
 



Windows PowerPro Page 144 Version 3.7 

Ctrl-right click the bar and view the command list Bar.  It shows three subbars:  edit, util, and 
none.  You will see these names on the *Format StartSubbar Commands.  You can switch 
among bars by right clicking the menu button and selecting a subbar name from the menu.  This 
will execute the corresponding *Bar SelectSubbar command; these commands are on the 
command list SubbarSelect. 
 
Tip:  do not forget the @ sign on your SelectSubbar commands! 
 
You can also manually show whole bars.  For example, the command list ManualBar can be 
shown as a bar by right clicking the notepad button.  View the configuration for the  command 
list bar and note the *Bar Show ManualBar for the right command for the notepad button.  Also 
note that "Auto show as bar" is not checked for this command list in the configuration of 
command list ManualBar.  Finally, the Properties for the ManualBar command list select own 
colors and font.  When you are finished with the demo, close the ManualBar bar by ctrl-right 
clicking it and selecting Close Bar from the menu.  
 
 

Demonstration of *Window Commands 
 
*Window commands let you manipulate active windows. Ctrl+right click the bar and view the 
keys/mouse tab.  You will see many *Window commands among the hot keys. 
 
Start notepad using the button on the demo. Right click on the minimize box in the caption and 
the window is minimized to the tray; click the icon in the tray to restore.  The right-minimize hot 
key function performs this function.  Right click the caption to close; the right caption anywhere 
hot key does this.  Restart notepad and right click the maximize button to rollup the window to 
its caption.  Right click maximize again to restore. 
 
You can also execute *Window commands from keystrokes:  for example ctrl+alt+k closes any 
window with *Notepad* in its caption.  It will produce an error message if notepad is not running 
because "error if no such window" is checked on the configuration for the command.  Try ctrl-
alt-k both with and without Notepad running. 
 
You can also execute *Window commands from menus.  Right click the system menu icon in 
upper left of caption to see a menu of *Window commands; this is command list control win 
activated by hot key right sys menu. 
 
*Window can also display menus of active tasks; selecting one performs the specified action.  
Middle click (shift+left) the menu button to see window WindowMenu which allows you to 
switch, close, put on top or put not on top any of your running programs.  Start notepad using 
the demo bar to try these on if you have no other programs running. 
 
You can also use the *Window menu command directly from a button or a hot key.  Right 
clicking folder executes a *Window show menu (for switching among windows) and tapping ctrl 
twice quickly shows the *Window close menu (select an entry to close that window). 
 
 

Demonstration of Sending Keys with *Keys 
 



Windows PowerPro Page 145 Version 3.7 

You can use *Keys to send keys to windows in order to save typing.  You can also use this 
command to automate a program function, often by sending alt-key to open a menu and then 
another keystroke to choose a menu option. 
 
The snippets menu illustrates both capabilities of *Keys.  One way to activate it is with ctrl-alt-s.  
Or, if you prefer a mouse, you can double click the right mouse button. 
 
Start notepad and ensure it is the active window.  Then use ctrl-alt-s or right double click to 
show the menu.  You can select a menu item to send keys by clicking on it, by using the 
underlined menu mnemonic (created with & in snippets command list item), or by using down 
arrow and enter.   
 
The last two menu items show automation of Notepad functions print preview and select 
all/copy to clipboard through the use of sending keystrokes.  These have been placed on a 
context menu which only appears when notepad is the active window.  You would often place a 
series of such context menus for automating different functions in the same command list.  For 
example, if you activate snippets when explorer is active, a different set of commands will be 
shown. 

 

Demonstration of Hot Keys and Mouse Actions 
 
The sample bar illustrates many different ways to use hot keys/mouse actions.  Ctrl-right click 
the bar and select the Key/Mouse tab.  Remember as you review these samples that you can 
use whatever key/mouse combination you find convenient to perform any of the sample actions 
or in fact to run any Windows file or perform any PowerPro built-in command. 
 
A basic use of hot keys is to start Windows programs.  For example, the hot key shift-ctrl-x 
starts explorer.  Use it now to open Explorer.   
 
Now position your mouse over explorer and make sure the window is the active window by 
clicking on it if needed.  Hot key ctrl-d will sort file names by date; it works by sending keys to 
explorer to select the appropriate menu item.  Hot key ctrl-n sorts by name.  Both of these hot 
keys will only operate if explorer is the active window as indicated by *Exploring* which appears 
in the target window of the hot key configuration and which selects only windows with Exploring 
appearing somewhere in their caption.  You can achieve the same results as the keystrokes 
with mouse actions:  right click and drag horizontally and vertically for about 10 pixels for the 
name sort and about 10 pixels for the date sort.  It may take a bit of practice to get the short 
drag needed to activate the hot key. 
 
Hot keys also work well with *Window actions, *Menu Show, and menus of *Keys. 
 

Demonstration of *Menu Folder 
 
The following examples use names of standard folders on your computer.  You may have 
different names for some of them or your file names may not be in English.  If so, you’ll need to 
change the folder names to those of your computer before the sample will work for you. 
 
For an example of *Menu Folder, press the button market folder and a list of all folder and files 
on your c drive will appear.  Click any folder or file to activate it.  To see the command which 
generates this menu, ctrl-right click bar, ensure the bar entry is selected on the command list 
tab, and double click on the folder item in this command list.  Note the format keywords 



Windows PowerPro Page 146 Version 3.7 

associated with the *Menu Folder command.  These are set by pressing the small find button 
beside the edit box. 
 
With this first example which shows all of drive c, you have to click on a folder to see the files in 
that folder.  PowerPro can display at most 13000 files and many people have more than this on 
their c drive.  You can also ask PowerPro to display files in a cascading menu.  Middle or 
shift+left click the Folder button to see an example.  You will have to wait for a few moments for 
the menu to appear.  It will show all .exe files under c:\program files.  If you view the command 
configuration, you will see how format keywords are used to select just .exe files. 
 
You can also use *Menu Folder with hot keys.  For example, ctrl+space show c:\my documents.  
And if you bump your mouse against the left screen edge and hold it at the edge for half a 
second, the shortcuts in c:\windows\start menu\programs will be shown. 
 
 

Demonstration of Keyboard Macros 
 
Keyboard macros let you use abbreviations for text you commonly type.  You create a 
command list where the item name is the abbreviation (letters, digits, spaces only) and the left 
command is a *Keys command or a *Clip textpaste command to send the keys.  The *Clip 
command is faster for longer text but it will overwrite the clipboard. 
 
Ctrl-right click the bar and view the command list tab.  The command list MyMacros shows 
sample abbreviations for me, test, ad and ac.  Ad and ac send the same text but ac uses the 
clipboard.   
 
You can use macros to execute any command, not just to send keystrokes.  In the sample xx 
starts explorer and min minimizes the current window. 
 
To use the Macros command list, you must define a macro signal character with hot keys.  If 
you view the key/mouse tab, you will see the = is defined as a hot key to execute the *Macro 
MyMacro command.  This makes = the macro signal character. 
 
To test, use the button to start notepad.  Try =me, =test, =ac, =ad and note the results.  Try 
=null and note that the text is unchanged since this is not a macro.  Then try =xx and =min. 
 

Demonstration of Running Commands when a Window First Opens 
 
You can configure PowerPro to check each new window that is opened on your system and run 
a PowerPro command for specified windows.  Any command can be used, but often this feature 
is used to press a button on the window, to send text to the window, or to position the window 
on the screen.   
 
You use a command list to specify the windows to be matched and the corresponding 
command.  Ctrl-right click the sample bar and view command list NewWindow.   
 
To activate the feature, you must first press the command list|setup button and select the 
command list "NewWindow"  in the drop down "use this command list to run commands when a 
new window first opens".  Press OK to save the configuration when you have done this then re-
open the configuration dialog with ctrl-right click.  View list NewWindow. 
 



Windows PowerPro Page 147 Version 3.7 

The command item names are used to matched newly opened windows.  The item *exploring* 
matches any new explorer window and positions the window in the center of the screen.  Start 
explorer to see the effect.  (You can start explorer from the Start Menu or by shift-left clicking 
the notepad button).  The Untitled – Notepad item matches newly opened notepad window and 
sends text abc to it.  Try running notepad from the button.  Finally, the command associated 
with About Notepad presses the OK button as soon as this window is opens; try selecting about 
notepad from the notepad help to see the effect.  You can press the default button of dialogs by 
sending the {enter} key stroke and you can press other buttons by sending alt-x (%x), where x is 
the underlined character on a button name. You can use &() expressions in the item name; the 
expression is re-evaluated each time a new window is opened and checked. 
 
When you are finished with the demo, be sure to go back to command list|setup and set the 
drop down box back to (none) so that this NewWindow sample does not interfere with other 
samples. 
 
 

Virtual Desktop Sample 
 
To run the virtual desktop sample, Ctrl-right click on any bar, select "Change configuration" 
menu item, and then select "demodesk" from the resulting submenu. 
 
The sample shows many different approaches to desktops; you would not likely want to use all 
of these at the same time on your configuration.  In addition, since every computer has exe files 
at different locations, the example uses only standard utilities like notepad and regedit. 
 
After starting the sample, there should be a bar in the upper left of your desktop.  Click on 
different gray buttons to show to different desktops.  Note how the active desktop has a pressed 
button.  This is because the command for the button is set to *Vdesk switchto deskname and 
because the option "Show button with *Vdesk … as pressed" is selected on desktop|setup 
configuration.  Note how desktop Manual is started with the CreateOrSwitchTo command; this 
command runs the list manual to create the desktop when it does not exist and switches to the 
desktop when it does exist. 
 
Selecting desktop edit shows a bar which only appears on that desktop in the top center of your 
screen.  Note that when you select desktop explore, extra buttons on the subbar explore are 
shown.  This also requires the option "Show subbar of same name as vdesk" on the 
desktop|setup tab. 
 
You can use hot keys ctrl-left arrow and ctrl-right arrow to switch desktops. 
 
You can also switch desktops by left clicking the leftmost button (the one with the desktop 
name) and selecting a desktop from the menu.   
 
Ctrl-right click on the bar and view the configuration of the bar, label on the first item, and the 
menu desks to see how the above features have been implemented. 
 
The initial contents of the desktop are set by the entries on the desktop tab.  Note the explore 
and edit command lists used to populate these desktops.  Note also the bar baredit for the edit 
desktop. 
 
You can use the *Vdesk arrange command to see the contents of all desktops.  In the sample 
this can be activated by moving the mouse to the top right screen momentarily, or by right 



Windows PowerPro Page 148 Version 3.7 

clicking the leftmost button on the bar.  You can make this window smaller by using the resizing 
border at the bottom or by right clicking on the window and selecting the Use Small Window 
option. 
 
Yet another way to access desktop features is to shift+right click a bar.  You can use this menu 
to switch desktops or to create new desktops.  You can also use the menu to lock windows on 
all desktops.  Middle (or shift-left) click the left most button to start calculator.  Shift-right click a 
bar and select Lock|Calculator.  Calculator will be part of all desktops:  try all of the desktop 
buttons to see this.  You could have also prespecifed that calculator be locked by entering the 
caption Calculator in the "Windows to be shown on all desktops" edit box on the Desktop|setup 
configuration dialog. 
 
You can repopulate desktops by running the desktop command list as a script.  There is a 
sample on the explore button.  Left click this button to switch to desktop explorer.  Close the File 
Manager and Explorer windows.  Now right-click the explore button and the explore command 
list is used to populate the desktop. 
 

Notes 
 
Purpose 
 
Use notes to capture any type of text:  reminders, scripts, text for copying into other documents, 
and so on.  Notes can be placed in categories.  Notes can be assigned a date and will be 
shown automatically by PowerPro  on that date.  You  can set the color and font of notes, you 
can resize and hide notes, and  you can drag and drop selected text from notes to other 
windows from windows to notes.  
 
Configuration 
 
The *Note command is used to work with notes.  Create new notes or open existing notes with 
*Note Open.  Hide or show open notes with *Note ShowHideOpen, open all notes in a category 
with *Note OpenCategory, open one note in a category with OpenOneFromMenu, close and 
save all notes in a category with *Note CloseCategory.  You can see a menu of all open notes 
and show and bring the selected one to the top with  *Note OpenMenu.   You can show notes 
with date categories today or before with *Note ShowToday. You can delete open notes from a 
given category with *Note DeleteOpenCategory. 
 
When you create a new note by executing *Note Open, you can optionally set its colors, text, 
source file, and category.  To access these features, use the "find" button to the right of the edit 
box when configuring the *Note command. 
 
Right click on a note text or use the Apps key (beside right ctrl) to see a configuration menu 
which lets you set the note category, set note color, close the note, run the entire note as a 
PowerPro script, and perform other functions. 
 
If the option is selected on Setup|advanced|notes, double click anywhere in the note to run the 
double clicked line as a command (else double click selects word). 
 
Resize a note by dragging its border and move a note by dragging the caption. 
 
Hide a note by clicking on the H in the caption or by showing menu with Apps key (beside right 
ctrl) and pressing H.  Show hidden notes with *Note OpenMenu or *Note OpenShow.   



Windows PowerPro Page 149 Version 3.7 

 
Close the note by left clicking the X at the right of the caption.  Left clicking the X closes and 
saves; right clicking the X closes and deletes.  You can also close with Alt-F4. 
 
Select all text in a note by clicking the A.  Left click and drag from the A to drag-and-drop all 
note text. 
 
Rollup a note to its caption by clicking R or using Rollup selection from right-click menu.  
Reverse rollup status by using R again.  Rolled up notes normally show only the caption, but 
you can show more by setting height using setup|advanced|notes   You can reverse the rollup 
state of all open notes in a category with *Note RollupCategory.  You can also use this 
command to unroll all notes in a category by preceding category name with a plus (+) and to 
rollup all notes by preceding the category name with a dash (-). 
 
You can control the default size and position, color, and font  of newly opened notes with the 
Configuration tabbed dialog, setup tab,  advanced button, note tab. This dialog also controls 
whether PowerPro closes open notes when it is shut down and  whether PowerPro shows notes 
assigned a date category before today.  In addition, this dialog lets you control whether R or H 
are shown in the caption, whether the caption shows the first line of text or the category, and 
whether rolled up notes are temporarily unrolled with the mouse stops over them for more then 
half a second. You can also specify whether notes appear on all desktops and whether shown 
notes get the keyboard focus. 
 
Saved notes are stored in a file named by the first line of the note followed by the date and time 
to make the note file name unique.  The files are stored in the note folder under your PowerPro 
folder, with a subfolder equal to the category name.    If PowerPro is running, you can double 
click on a note file in Explorer to show the note.  You can also open a given note in category 
"MyCat" with first line starting with "first line of text" by running the command 
*Note 
OpenCategory 
MyCat\first line of text* 
Where Cat is the note category and "first line of text*" is the start of the first line of the note’s 
text. 
 
You can use notes for future ToDo’s by assigning a date category to them and configuring 
PowerPro to show notes from today or before when it starts (using 
Configuration|Setup|Advanced|Note) or by running *Note ShowToday (eg in a StartUp alarm). 
 
Notes can hold up to 64K of text. 
 
 
Summary of Usage 
 
The following table summarises the user interface to notes and how to use it: 
 

Desired Action How to Perform Action 
 
Create new note  

Execute *Note Open from bar, menu, hot key, tray icon, etc 

 
Create notes in different 
categories each with own 

Configure a *Note Open for each category, using "find" button to 
assign color and category. 



Windows PowerPro Page 150 Version 3.7 

color 
 
Copy note text to/from 
other windows. 

Select text and drag and drop.  Or use right click menu for 
copy/paste. 

 
Select and copy all text. 

Left click A button at upper left of note.  Drag to move all text.  
Hold down ctrl to copy. 

 
Open a note at an exact 
time. 

Use scheduler to open a specific note at a specific time by 
scheduling the command *Note OpenCategory cat\start of note* 
where cat is the note category and "start of note" are the initial 
characters of the first line (up to 63 characters). 

 
Close note and save it 

Left click X at upper right of note or right click note text and select 
close from menu. 

 
Close note and delete it 

Right click X at upper right of note, or right click note and select 
delete, or use explorer to locate note in its category folder and 
delete. 

 
Set category of note 

Specify initial category in *Note Show, or right click note and 
select Category entry. 

 
Create new category 

Right click note and use Category|New or use explorer to create 
new subfolder of Notes folder (under PowerPro main folder). 

 
Resize note. 

Drag border or corner.   

 
Hide note 

Hide note with H button; reshow with *Note OpenMenu or *Note 
ShowCategory, or show menu with Apps key and press H. 

 
Show hidden note 

Execute *Note MenuOpen and select note or use *Note 
ShowOpen. 

 
Delete note 

Open note and right click X or use explorer or right click any note 
and select "Delete from Menu ". 

 

Skins 
 

Using Skins 
 
Purpose of Skins 
 
If you want more options and flexibility in specifying the look of a bar, you can use skins.  Skins 
give you more control than the formatting options in the configuration file:   skins let specify that 
a bar uses a background bmp drawing of any shape and they let you specify the size, position, 
font, text/icon position, and look of any button.  You can also use skins to specify cursors and 
sounds for buttons. 
 
Skins are defined by files which you keep separate from your pproconf.pcf file (which is in your 
Powerpro folder and stores configuration data).  The pcf file specifies what you want buttons to 
do.  The skin files specify the look of bars and buttons.  But there is still an interaction between 
look and configuration meaning that some skins expect certain features in your pcf file and that 
not all skins work with all pcf files.  For example, many skins display time, date or other data and 
expect you to define a *Info button at the top of your command list.  Or if you use subbars, you 
will usually need to have all the subbars defined in a series at the end of the command list.  
Certain skins works best with the section/subbar configuration, described below.  The usage 
notes on the skins configuration dialog will describe constraints on the pcf configuration for the 
skin. 



Windows PowerPro Page 151 Version 3.7 

 
 
Installing Skins (including the sample skins) 
 
Before installing your first skin, make sure that you create a folder called Skins under your main 
powerpro folder.  For example, if PowerPro is stored in C:\Program Files\Powerpro, create a 
folder called C:\Program Files\PowerPro\Skins using explorer. 
 
Skins are distributed as zip files.  To install any skin, create a subfolder of your skins folder with 
the same name as the zip file (or anything else if that name is already in use).  Then unzip the 
skins .zip file into that subfolder.  You will find sample files Kaos1SkinSample, zlkSkinSample, 
NewbieSkinSample, and KaosSkinSample in your PowerPro folder and can unzip these to 
create sample skins to experiment with. 
 
Note:  you should be able to use Kaos1 and zlk on your current bar, but before using sample 
Kaos or Newbie, please review the help on section/subbar configurations below. 
 
Sample skins are based on those created for the LaunchKaos program; see 
www.PocketKaos.com for more information on this program and www.skinz.org for skins which 
can be used at as basis for creating PowerPro skins. 
 
Click here to learn about how to create new skins for yourself. 
 
Using a Skin 
 
To configure a skin, Ctrl-right click any bar and select "Configure Skin for Bar" from the resulting 
menu.  You can also access this dialog by pressing the "Set Skin" button on the command list 
configuration dialog. 
 
Then select the skin file you want to use from the drop down at the top of the dialog.  Review 
the usage notes at the bottom of the dialog for information on how to set up the command list 
items in your bar for best use of the skin.  You will also be able to use the checkboxes to enable 
or disable the sound, menu background, font, and marker bitmap features of the skin, if the skin 
uses these features. If you check "use menu/otherbar background" to use the skin's background 
for other bars and menus, you can still override the background for individual bars or menus by 
putting none or a bmp file name in the command list|properties background for these bars or 
menus. 
 
 
Although skins control the overall look of your bar and buttons, you still set the bar position and 
the autohide approach using Command List|Properties. 
 
The "last for setup" feature of active buttons does not apply if you use a skin; the settings 
provided by the skin take priority.   
 
Each time you reconfigure a skinned bar, it will take a few seconds for the bar to reappear. 
 
Section/Subbar Configuration 
 
Some skins work best with a section/subbar structure in your pcf file.  This will be indicated in 
the usage notes.  The Kaos and Newbie samples use this structure. 



Windows PowerPro Page 152 Version 3.7 

 
This skin structure is meant to show a command list which has a series of subbar selection 
buttons at the start and a series of subbars at the end.  The idea is to use each subbar for a 
category of commands or documents and to use a subbar for each category.  You can find 
more information on this type of subbar usage here. 
 
To see a sample of this type of configuration and to test Kaos and Newbie, Ctrl-right click on 
any bar, select "Change configuration" menu item, and then select "subbars" from the resulting 
submenu. 
 
This will display a new bar with subbar selection buttons at the start and subbars at the end.  To 
see its layout, Ctrl-right click bar and select configure from menu.  For best effect, you should 
view this bar with a skin by pressing Set Skin from command list configuration and selecting 
Sample Kaos or Newbie. 
 
When you are finished with the demo, ctrl-right click on the bar and select "Change 
configuration" menu item, and then select "pproconf" from the resulting submenu to restart your 
configuration.  
 
 

Creating Skins 
 
General Structure of Skins 
 
A skin consists of a skin .txt file and associated bmp, cursor (.cur or .ani), and wav files.  All 
these should be installed into the same folder.   
 
The skin text file consists of a series of lines of the form: 
 
name keyword value keyword value keyword value  
 
The name is one of the words *Skin, *Bar, *Font, *Buttondefault, or *Button.  The first line in a 
skin .txt file must start with *Skin.  The keywords depend on the name.  Keywords can appear in 
any order. The values depend on the keyword.  Some keywords are not followed by values. If a 
value contains blanks, the value must be enclosed in double quotation marks.  You can extend 
a name entry to the next line by ending a line with a dash (-).  For example, 
*Bar height 200 width 150 - 
  shape "background for panache.bmp" 
sets the bar with keyword height, value 200, keyword width value 150, and shape to 
background for panache.bmp. 
 
Blank lines and any lines in the .txt file starting with a semi colon (;) are ignored. 
 
The case of letters in keywords is ignored:  eg, *SKIN or *Skin or *skin are all the same. 
 
Many keywords are followed by numbers, including numbers used for colors.  These numbers 
are assumed to be based 10 unless preceded by the letter x, in which case they are assumed to 
be hexadecimal. For example 254 is the same as xfe. 
 



Windows PowerPro Page 153 Version 3.7 

Some keywords use a color value.  Colors are specified as either one integer or as three 
integers between 0 and 255.  The three number format color has Red, Green, and Blue 
components, each between 0 and 255.  Or you can use any HTML color values as a single 
integer.  If you use three integers, the list of three numbers must be in double quotations:  eg, 
"244 0 0" is bright red. You can use the Paint program, Colors|Edit Colors|Custom colors dialog, 
to see various colors and their Red Green Blue components.  Or you can use many available 
HTML-support programs to find the single integer.  Remember to put the letter x in front of any 
hexadecimal values.  For example, "255 255 255", "xff xff xff", and xffffff all specify white. 
 
Skins files will often refer to other files:  bmp files, wav files, cursor (.cur or .ani) files.  These 
should be located in the same folder as the skin and be referred to by filename only, without any 
path.  You must always include the file extension (eg .bmp). 
 
When building or modifying a skin, you can quickly re-apply a new skin text file by ctrl-right 
clicking a bar and selecting "Re-apply Skin" from the menu. 
 
Layout of Skin .txt Files 
 
Skin .txt files follow this structure 
*Skin keywords values 
usage notes structured as any number of lines with any text 
this lines describe the usage of the skin 
they are reproduced in the Set Skin dialog in the list box at the bottom of the dialog 
 
*Bar keywords values 
*Font 1 keywords values 
 
*ButtonDefault keywords values 
*Button id 0 repeat "count columns h.gap v.gap" keywords values 
 
The *Skin line must be the first line.  It is followed by a usage notes.  Next comes the *Bar line 
to give the overall shape of the skin.  Up to 4 *Font lines can optionally provided to define fonts 
for use on buttons.  *ButtonDefault lines can optionally be used to set default characteristics for 
buttons.  Finally, a series of *Button lines appear to define position, size, shape, cursors, 
sounds, etc of buttons.  Often (but not always) a single *Button line will be used to create an 
array of buttons by using the repeat keyword.  *Button lines refer to the corresponding 
command list items in the pcf file through the id keyword.  You should make sure there is a 
button command for each item in the command list, usually by using a large repeat value on the 
last *Button command. 
 
When you build your skin .txt file, you must have a model of the corresponding configuration 
(pcf file) in mind.  Two common models are the button array model and the section/subbar 
model.   
 
The button array model consists of an *Info button (optional), followed by an array of buttons 
which are used to run commands.  Its skin .txt file would look like this example: 
*Skin 
This skin file uses the button array approach. 
The first command list item should have a *Info label. 
 
*Bar  



Windows PowerPro Page 154 Version 3.7 

*Button id 0  
*Button id 1 repeat "1000 6 2 3" 
The first *Button command gives a special layout used to display information (using *Info).  The 
next example *Button command using the repeat keyword to create an array of buttons with 6 
buttons per row, 2 pixels between buttons horizontally, and 3 pixels between buttons vertically.  
The repeat count of 1000 is a large number chosen to process all remaining buttons on the 
command list.  See file SkinTemplate1.txt in PowerPro folder for a template of this skin .txt file 
structure. 
 
The section/subbar model is used to create a series of section buttons; pressing any section 
button displays a set of command launch buttons.  Subbars are used in the pcf file for the button 
in each section.  The *Skin .txt file has this structure 
: 
*Skin  
This skin file uses the section/subbar approach. 
The first command list item should have a *Info label. 
The next command list items should provide subbar selection buttons. 
A series of subbars corresponding to the selection buttons should appear at the end of the 
command list. 
 
*Bar  
*Button id 0  
*Button id 1 repeat "toSubbar 1 2 0" 
*Button id next repeat "1000 1 2 0" 
 
The first *Button command gives the layout for a *Info button.  The next *Button command gives 
the layout for the selector buttons; the command list items corresponding to these buttons 
should either be ordinary command buttons or buttons which select subbars.  The repeat 
"toSubbar…" keyword says that this *Button layout should apply until a *Format Subbar is 
encountered.  Then the *Button id next line will be processed, and it will apply to the subbars 
which end the command list.  PowerPro automatically arranges to format the subbars so that 
they all start at the button position given by this *Button command.  See file SkinTemplate2.txt in 
PowerPro folder for a template of this skin .txt file structure.  (LaunchKaos skins use the 
section/subbar approach). 
 
 
*Skin Line Details 
 
The *Skin line must be the first line in all skins text files and can include these keywords and 
associated values:   
 

Keyword Purpose and Value Default  
author Followed by author name (in double quotes if it contains 

blanks) 
none 

created Followed by created date. none 
title Followed by any text for title. none 
thumb Followed by name of .bmp file to use as thumbnail display in 

skins configuration dialog. 
none 

 



Windows PowerPro Page 155 Version 3.7 

The *Skin line is followed by a set of text lines with any text which gives usage notes for the 
skin. 
 
*Bar Line Details 
 
The *Bar line follows the usage notes.   
 
If you want to bar to take on the shape of the background bit map, you specify the shape 
keyword followed by the .bmp file name as the value.  In addition, when drawing the bitmap for 
non-rectangular shapes, you must use the transparent color magenta "255 0 255" for the 
portions of the bitmap which you do not want to appear on the screen.  Be careful to use a pure 
color for the transparent portions; many advanced painting programs will use anti-aliasing which 
will mix colors together.  MS Paint uses only pure colors. 
 
PowerPro shape bmps are compatible with the bmps created for the LaunchKaos program; you 
can find many such bmps at www.skinz.org.  
 
Bars using "shape" are never resizable.  Use the "background" keyword instead of shape to 
allow resizing (depending of course of the pcf settings). 
 
The following table summarizes the keywords and values for bar.  The default value gives the 
value used if the keyword is not present. 
 

Keyword Purpose and Value Default  
shape The shape keyword is followed the filename of the bmp which 

determines the shape, size, and look of the skin. 
none 

background Followed by file name for .bmp for background.  Does not affect the 
bar size or shape.  Use either Shape keyword or Background 
keyword, but not both. 

none 

marker Followed by a bmp file to show when the bar is hidden if the pcf file 
includes the option "Marker" for autohide bar. 

none 

width Width of bar in pixels. Ignored if shape specified. none 
height Height of bar in pixels.  Ignored if shape specified. none 
sound sound file to play when bar is first shown. none 
soundshow sound file to play when bar is shown after autohide. none 
soundhide sound file to play when bar is hidden. none 
cursor Cursor to use if no button cursor applies (following value must be 

.cur or .ani file). 
none 

backcolor Background color.  Ignored if background bmp specified. gray 
otherback Default background bitmap file for menus and other bars (to give 

menus and other bars compatible look to skinned bar); followed by 
.bmp file name. 

none 

othertext Default text color for menus and other bars. none 
minmenuwidth Minimum menu column width in pixels. none 

menuwidth Fixed menu column width in pixels. none 
menuheight Fixed menu item height in pixels. none 
menusepcolor
top 

Color of top line of separator. system 
color 



Windows PowerPro Page 156 Version 3.7 

menusepcolor
bottom 

Color of bottom line of separator. system 
color 

menuindent Fixed menu item indent in pixels. none 
maxmenuwidth Maximum menu column width in pixels. none 

 
Example: 
*Bar shape "fancy shape.bmp" marker mymarker.bmp cursor mycursor.cur 
creates a bar with shape given by  "fancy shape.bmp", a background for the marker window 
given by mymarker.bmp, and the default cursor mycursor. 
 
 
*Font Line 
 
The *font line can be used to create up to four fonts to be referenced in *Button and 
*Buttondefault lines.  The word Font must always be followed by a space then a single digit 0, 1, 
2, 3 to specify which font is being defined.  Note that font 0 is predefined to the font set for the 
command list by the .pcf file, but you can override this font, if you want. 
 
Keyword Purpose and Value Default 
name Font name, as it appears in a font dialog. Arial 
size Followed size, as it appears in a font dialog. 10 
install Followed by name of .fon or .ttf file to install; only needed if you are 

not using a standard Windows font and you include a font file with 
your skin. 

10 

weight A number in the range 0 through 1000. For example, 400 is normal 
and 700 is bold. 

400 

escapement A number between 0 and 3600. Specifies the angle, in tenths of 
degrees, between the escapement vector and the x-axis of the 
device. The escapement vector is parallel to the base line of a row 
of text.  
 

0 

orientation A number between 0 and 3600.  Specifies the angle, in tenths of 
degrees, between each character’s base line and the x-axis of the 
device 
 

0 

charset Needed for some non-English fonts; followed by a number between 
3 and 255 (see below). 

400 

bold Same as specifying weight 700. N/A 
italics Selects italics font. N/A 
underline Selects underlined font. N/A 
 
Some charset values are:   128 for JIS, 129 for HANGEFUL, 177 for Hebrew, 178 for Arabic, 
161 for Greek, 162 for Turkish, 163 for Vietnamese, 222 for Thai, 238 for East European, 204 
for Russian, 186 for Baltic. 
 
Escapement and orientation may not work with all fonts or all versions of Windows.  Try 
experimenting with each separately until you get the effect you want. 
 
Example: 



Windows PowerPro Page 157 Version 3.7 

Font 1 name "Times New Roman" size 12 italics 
sets font 1. 
 
*ButtonDefault Line 
 
The *Buttondefault line uses the same keywords and values as the *Button line, described 
below.  It provides default values for all keywords for any button commands which appear after 
the *Buttondefault line in the skin .txt file.  You can use many *Buttondefault commands 
throughout the skin file to change the defaults.  For example: 
 
*ButtonDefault textcolor "0 0 0" Facebmp buttonback.bmp pressbmp "button pressed.bmp" 
height 20 font 1 
sets the default background and pressed bitmaps, default font number and the default height.  If 
these keywords are omitted from following Button lines, the defaults will be used. 
 
If you want to stop using defaults from *ButtonDefault, use 
*ButtonDefault reset 
to remove all defaults. 
 
*Button Line 
 
*Button lines give the size, position, and appearance of the button.  A *Button line can refer to 
one or more items in the command list. 
 

Keyword Purpose and Value Default Value  
id Must always be the first keyword to specify the button to 

work with from the command list; the keyword can be 
followed by one of these three types of values: 

a number specifying the item number in the command list; 
the first item is item 0.  Hidden items and *Format items 
are included when determining the item number. 
 
the word "next" for the next button, skipping any buttons 
with left command *format 
 
any other string which specifies the first item in the 
command list which has an item name beginning with the 
same characters as the string 

next 

   
left Position of left of button, relative to top left of bar, in pixels.  

Use 0 for top left of bar.  
right of previous 

top Position of top of button in pixels relative to top of bar; top 
of bar is 0 and lower positions have higher numbers.   

none 

width Width of button in pixels use pcf width or 
text+icon width 

height Height of button in pixels. pcf height or 
icon height 

no3d No special drawing effects are used when the mouse 
hovers or the button or when the button is pressed (not 
followed by a value).  You would normally specify this 

N/A 



Windows PowerPro Page 158 Version 3.7 

keyword if you specified the pressbmp or hoverbmp 
keywords. 

notext The item name text is not shown.  This could be used, for 
example, to relate the button to the pcf using the item 
name and idname but not show the item name text. 

N/A 

textover Text is only shown if mouse over button (no following 
value) 

none 

iconover Icon is only shown if mouse over button (no following 
value) 

none 

soundhover sound file to play when mouse moves over button none 
soundpress sound file to play when button is clicked none 
cursor cursor to use when mouse over button (following value 

must be .cur or .ani file, or a standard name Ibeam, cross, 
help, wait, no) 

none 

   
font Number of font (0 to 3). 0 
text Text color when mouse is not over button. pcf setup 
texthover Text color when mouse is over button none 
textpress Text color when button is pressed none 
textall Sets all three text colors. none 
textpos Follow by right for right justify or center for centering, or top 

for top-alignment, or multi for multi-line text broken at end 
of words, or bottom for bottom-aligned text.  You can use 
textpos most than once to specify both horizontal and 
vertical justification, eg textpos right textpos bottom. 

none (left, 
vertical center) 

textleft Followed by number giving the offset to the text rectangle 
from the left of the button. Note:  textpos setting gives the 
justification of text within this rectangle. 

0 

textwidth Followed by number giving the width of the text rectangle. 
Note:  textpos setting gives the justification of text within 
this rectangle. 

width of text 

texttop Followed by number giving the offset to the text rectangle 
from the top of the button. Note:  textpos setting gives the 
justification of text within this rectangle. 

 

textheight Followed by number giving the height of the text rectangle. 
Note:  textpos setting gives the justification of text within 
this rectangle. 

height of text 
single line 

   
iconpos Follow by right for right of text, center for center if no text,  

or above for above text  
none (left of 
text) 

icontop Offset to icon from top of button; overrides iconpos.  
iconleft Offset to icon from left of button; overrides iconpos.  
   
face Background color when mouse is not on button.  Omit to let 

base bmp from bar show through for button. 
pcf setup 

facehover Background color when mouse over button none 
facepress Background color when button is pressed none 
faceall Background color for all cases none 
facebmp Background bmp file when mouse is not on button. none 



Windows PowerPro Page 159 Version 3.7 

hoverbmp Background bmp file when mouse is over button none 
pressbmp Background bmp file when button is pressed none 
allbmp Sets face, hover, press to same value none 
   
repeat Creates an array of evenly spaced buttons.  Must be 

followed by four numbers in quotes:  the first number is the 
repeat count, the second gives the number of columns, 
and the third and fourth give gap in pixels between buttons 
horizontally and vertically.  Use ToSubbar for first number 
to repeat until *Format StartSubbar encountered in pcf 

none 

 
repeat Creates an array of evenly spaced buttons.  Must be followed by four numbers in quotes:  
the first number is the repeat count, the second gives the number of columns, and the third and 
fourth give gap in pixels between buttons horizontally and vertically.  Use ToSubbar for first 
number to repeat until *Format StartSubbar encountered in pcf none 
 
The first keyword must always be id.  If a string is specified as the following value,  the *Button 
line refers to the first item in the command list with a name which start with the text characters.  
If ia number is specified, then the *Button line refers to the item number given by the value.  If 
next is specified, the *Button line refers to the item following the item used by the previous 
Button line.  (The first *Button line defaults to item 0).  *Format commands are skipped by 
Button lines.  But note that when counting items for id followed by a number, all command list 
items are included. 
 
You should always specify top, left, width, and height. 
 
You can make the same *Button line refer to multiple command list items by using repeat.  The 
id specifies the first item; subsequent items in the command list for the repeat follow this initial 
item in the command list.  The repeat value must be at least 1 or use ToSubbar to make repeat 
apply until *Format Subbar encountered. 
 
There can be more button commands than items in the command list; such button commands 
(or repeats) are ignored but this is not an error.  Also, if the id refers to a command list item 
which does not exist, the Button command is ignored but again this is not an error.   
 
If you specify both a color and a bmp for background, hover, or press, the bmp takes priority. 
 
To let the base background from the bar show through, omit both face color and facebmp. 
 
See the sample skins for examples of *Button usag 
 

Sharing PowerPro Configurations 
 
You can share your PowerPro configuration with another user by sending the pproconf.pcf file 
to that user.  The receiver can rename the file to say sharing.pcf (for safety) and put the file in a 
new folder and then run the configuration in any one of these three ways: by ctrl-right clicking 
any bar and selecting New Configuration File, by using *Exec ChangeConfiguration, or by 
running the command line 
c:\program files\powerPro\powerpro.exe c:\path\to\shared\sharing.pcf 
assuming the shared .pcf configuration file is in folder c:\path\to\shared. 
 



Windows PowerPro Page 160 Version 3.7 

If the folder references .bmp, icon, or shortcut files, it is possible to include these in your shared 
information tool. The best way is to put these files either in the same folder as your powerpro 
configuration or a subfolder of your powerpro configuration folder.  When you reference the files 
in your configuration, use only the relative path; for example, a .bmp file back.bmp stored in the 
theme subfolder of your powerpro configuration folder would be referenced as 
theme\back.bmp 
To share your pcf and related files, zip them together.  The person you are sharing with then 
unzips the configuration files into a new folder and can then proceed as above to try the 
configuration. 
 
If you want to use command lists or hot keys from a shared configuration in your working 
configuration, use the export as text feature to export the command lists or hot keys of interest. 
Then import these into your configuration.  You may also need to set features from the shared 
configuration command list|setup dialog. 
 
 

Contact for Questions or Support 
 
Find out about the latest Windows PowerPro version at 
www.WindowsPowerPro.com 



Windows PowerPro Page 161 Version 3.7 

Plugins 
 

General Information 
 
PowerPro allows programmers to add new features by writing plug-ins.  A plug-in is a .dll file 
that you must place in the same folder as your PowerPro .exe file or subfolder plugins (usually 
c:\program files\powerpro\plugins).  The plugin will offer one or more services.   
 
To use a plugin, you use an expression.  Use the syntax 
dllname.service(args) 
to run a plugin.  The case of the dllname and the service are ignored. 
 
You can use plugins standalone in a statement or in expressions.  Standalone plugin calls are a 
form of expression and you can use variables and other expressions in the arguments. 
 
If the plugin service as no arguments, you can call the service by writing either dllname.service() 
or dllname.service. 
 
Examples 
 
file.close(handle) 
call file plugin, service close, with argument handle.  Note that you can use a plugin call alone 
as a script command or in the command entry controls. 
 
res = float.add(a,b,c) 
calls float plugin, service add, arguments a, b, and c. 
 
file.CloseAll 
calls the file plugin, service closeall (case of service name ignored) with no arguments. 
 
days = Date.Diff(date.today(), test_date) + 5 
calls Date plugin with service diff.  The first argument in turn calls date plgin again with service 
today. 
 
PowerPro comes with three plugins -- file, date, and float.  These are found in the file plugins.zip 
which you must unzip into the powerpro folder.  See the corresponding .txt file for 
documentation. 
 
If you wish, you can unload plugins from memory when you are finished with them with the 
unload service, eg date.unload.  PowerPro will call the unload service if it exists, then unload the 
plugin.  Only do this if you do not plan to use the plugin again since it takes time to reload a 
plugin. 



Windows PowerPro Page 162 Version 3.7 

How to Program Plugins 
 
The remainder of this help section is intended only for programmers of plug-ins. 
 
Basics of Programming Plugins 
 
A plugin is a dll which PowerPro loads dynamically.  The services are the exported routines.  
Within the dll, the service names must be in lower case.  Neither the plug-in name nor the 
service name can contain blanks. You can see sample plugins in the plugins zip file in the 
PowerPro folder.   
 
You cannot use the names run or runfile for plugins. 
 
The service declarations should be 
 
_declspec(dllexport) void showmenu(NULL,NULL, 

int (*GetVar)(LPSTR szVar, LPSTR szVal), void (*SetVar)(LPSTR szVar, LPSTR szVal),  
DWORD* pFlags, UINT nargs, LPSTR* szArgs, PPROSERVICES* ppsv) 

 
(assuming chars are one byte).  Remember that lower case must be used for service names. 
 
The first two arguments are always NULL and should be ignored.   
 
The functions GetVar and SetVar access the variable given in the first string and get/set the 
value in the second string.  GetVar set szVal to the first 263 characters of the variable with 
name in szVar..  If you want to work with variables of any length, use the PPROSERVICES 
function GetVarAddr.  SetVar sets the value of the variable with name szVar to the string 
pointed at by szVal; this string can be of any length. 
 
You can use (*GetVar)("pproversion", szVer) to access the PowerPro version as a four digit 
string. 
 
The 32 bit unsigned values pointed at by pFlags holds PowerPro’s 32 flags.  Flag 0 is in the 
least significant bit. You can change or read any flag. 

 
The variable nargs is a value between 0 and 9 to indicate the number of arguments used to call 
the plugin service.  Pointers to the arguments are stored in string array szArgs..  Argument 1 is at 
*(szArgs+1), argument 2 is at *(szArgs+2), and so on.  The pointers can point at strings of any 
length. 
 
You can return a result from the plugin from setting *szargs to the result if it is less than 263 
characters in length or by using the AllocTemp and ReturnString functions of PPROSERVICES 
as described below.. 

 
PPROSERVICES 
 
The pointer ppsv points to a PPROSERVICES structure which is a list of function pointers to 
functions provided by PowerPro.exe. 
 
typedef struct tagPProServices 



Windows PowerPro Page 163 Version 3.7 

{ 
 void (*ErrMessage)(LPSTR, LPSTR); 
 BOOL (*MatchCaption)(HWND, LPSTR); 
 HWND (*FindMatchingWindow)(LPSTR,BOOL); 
 BOOL (*IsRolled)(HWND hw); 
 BOOL (*IsTrayMinned)(HWND hw); 
 void (*GetExeFullPath)(HWND hw, LPSTR szt); 
 void (*RollUp)(HWND hw); 
 void (*TrayMin)(HWND hw); 
 void (*SendKeys)(LPSTR sz); 
 BOOL  (*EvalExpr)(LPSTR sz, LPSTR szo); 
 void  (*Debug)(LPSTR s1, LPSTR s2,LPSTR s3, LPSTR s4, LPSTR s5, LPSTR s6); 
 LPSTR (*AllocTemp)(UINT leng); 
 void (*ReturnString)(LPSTR sz, LPSTR* szargs); 
 LPSTR (*GetVarAddr)(LPSTR var); 
 LPSTR (*SetVar)(LPSTR var, LPSTR val); 
 
} 
PPROSERVICES; 
Use the call (ppsv->ErrMessage)(LPSTR, LPSTR) to show an error message consisting of the 
first string and then the second string; if the plugin is called from a script, the user will have the 
opportunity to stop all scripts. 
 
Use (ppsv->MatchCaption)(hwnd, szCaptionList) to use PowerPro's caption list matching 
engine to see if the window with handle hwnd matches the caption list string. 
 
Use (ppsv->FindMatchingWindow)(szCaptionList, bHidden) to use PowerPro's caption matching 
engine to find the first window matching the caption list szCaptionlist; set bHidden to 1 to include 
invisible windows. 
 
Use  (ppsv->IsRolled)( hw) to check to see if the specifyiedwindow is rolled-up by PowerPro; 
function returns 1 if it is and 0 otherwise. 
 
Use (ppsv->IsTrayMinned)(hw) to check to see if the specified window is trayminned by 
PowerPro; function returns 1 if it is and 0 otherwise. 
 
Use (ppsv->GetExeFullPath)( hw, sz) to get full path to exe of window hw) 
 
Use (ppsv->RollUp)( hw) to rollup window hw if it is not already rolled up and to show it 
otherwise. 
 
Use (ppsv->TrayMin)( hw) to tray minimize window hw if it is not tray minimized and to show it 
otherwise. 
 
Use (ppsv->SendKeys)( sz) to send keys using sz; this is equivalent to using *keys command 
on sz.  The string sz cannot contain more than 260 characters. 
 



Windows PowerPro Page 164 Version 3.7 

Use (ppsv->EvalExpr)(szExpr, szResult) to evaluate the expression stored in szExpr and return 
the result in szResult.  The result is always truncated to 263 characters. 
 
 Use (ppsv->Debug)(s1,s2,s3,s4,s5,s6) to display up to six strings in a line in the debug window; 
the strings are separated by blanks.  You do not need to specify all six strings; e.g (ppsv-
>Debug)(s1,s2)) is valid. 
 
Use (ppsv->AllocTemp)(len) to allocate a temporary variable of len bytes.  PowerPro will 
automatically free this memory after the expression involving the plugin is complete (unless the 
temporary is assigned to a variable with SetVar).  You must never free space allocated by 
AllocTemp and you should always use AllocTemp to allocate memory so that it can be freed 
when your plugin completes. 
 
Use (ppsv->ReturnString)(szRes, szargs) to return the string in szRes as the result of the plugin 
call.  This string can be any length.  A pointer to the string is stored in *szargs, prefixed by '\01' 
so that PowerPro can distinguish the result from a returned string stored directly in *szargs. 
 
Use (ppsv->GetVarAddr)(szvar) to get the address of the string stored in the variable named in 
szvar.  You should consider the memory at this address to be read-only.  If you want to change 
a variable, use (ppsv->SetVar) to avoid memory leaks. 
 
Use (ppsv->SetVar(szvar, szval)) to set the variable named in szvar to szval.  This is the same 
functions as (*SetVar) from the plugin argument list. 
 

Sending Commands to PowerPro 
 
You can send commands back to PowerPro using two methods:  One is to create a full 
command line, including a full path to PowerPro, and WinExec it.  The other is to create the 
PowerPro command only (without the path to PowerPro) and using a special SendMessage 
WM_COPYDATA.  The advantage of the WM_COPYDATA is speed and the fact that the 
command is executed synchronously, that is you know it is done when the SendMessage 
returns.  (Note:  PowerPro uses a WM_COPYDATA message, rather than a plain 
WM_USER+xxx, because this message is sometimes needed to cross process boundaries). 

 
The following code shows how to use the WM_COPYDATA message by running a *menu Show 
command on the menu name stored in variable MenuName. 
 

#define VAR_SIZE 264 
 char szCommand[VAR_SIZE+24]; 
 char szName[VAR_SIZE+1]; 
 COPYDATASTRUCT cd; 
  
 strcpy(szCommand, "*Menu Show  "); 
 (*GetVar)("MenuName", szName); 
 strcat(szCommand, szName); 
 cd.dwData = 1; 
 cd.cbData = strlen(szCommand)+1; 
 cd.lpData=szCommand; 
 SendMessage(g_hwndPowerPro, WM_COPYDATA, 0, (LPARAM)&cd); 
 



Windows PowerPro Page 165 Version 3.7 

 
Here g_hwndPowerPro has been set to the PowerPro hidden control window: 
 g_hwndPowerPro = FindWindow("PowerProMain",NULL); 
 

Plugin Memory 
 
PowerPro normally does not free a loaded plug-in until PowerPro exits.  This can be awkward 
when debugging.  So you can force PowerPro to unload using FreeLibrary by using a service 
name of  unload, eg plugin.unload. 
 
To save memory if multiple plugins are loaded, consider using the dll msvcrt.dll of standard dll 
services by compiling with library MSVCRT.LIB and link options /nodefaultlib:"libcmt". 



Windows PowerPro Page 166 Version 3.7 

AU PLUGIN  (Version 2002 12 22) 
 
OVERVIEW 
 
The au plugin provides access to the services provided by the AutoIt dll as documented in 
AutoItDll.chm.  This dll must be in the same folder as au.dll. 
 
Many of these services are also available from the win keyword or from the PowerPro *keys 
commands. However, the au plugin uses a different approach for implementing these features 
which may work when a PowerPro feature is not working.  For example, try au.send as an 
alternative way of sending keystrokes. 
 
The documentation for the features of au.dll is found in AutoItDll.chm.  When calling a function, 
use au. instead of AUTOIT_.  For example, send a left click with au.LeftClick or test if a window is 
active with au.IfWinActive(caption, text). 
 
Use any PowerPro variable or expression for the service arguments.  The au dll will use integers 
or strings as required by AutoItDll.dll. 
 
 
 



Windows PowerPro Page 167 Version 3.7 

 
DATE PLUGIN (Version 2002 10 29) 
 
OVERVIEW 
The Date plugin lets you work with dates:  adding days to a date, finding the number of days 
between two dates, finding the weekday of a date, finding the day in the year of a date, and 
finding the week number of a date. 
 
Dates processed by the date plugin follow the same format as the dates produced by PowerPro 
keywords and functions like date and formatdate.  Dates are represented as eight digit number 
yyyymmdd, such as 20021028 for October 28, 2002 or 20030101 for January 1, 2003. 
 
LIST OF SERVICES 
 
Date.Today     todays date, same as PowerPro keyword date 
Date.AddDays   adds a given number of days to a date 
Date.Sub       subtracts two days, given the number of days between them 
Date.WeekDay   gives day of week for given date, 0=Sunday, ..., 
6=Saturday 
Date.YearDay   gives day number in year of date 
Date.WeekNum   gives week number in year of date 
Date.Get       select a date from a calendar 
 
DESCRIPTION OF SERVICES 
 
In the following descriptions, d1, d2 and d3 represent eight digit dates, and n1 is a number of 
days  In all cases, n1 may be positive or negative. 
 
TODAY 
Date.Today 
Returns todays date; same as internal keyword date. 
 
ADDDAYS 
d2 = Date.AddDays(d1,n1) 
Adds n1 days to d1, returning resulting date. 
d2 = Date.AddDays(20021031, 2) sets d2 to 20021102. 
d2 = Date.AddDays (20021031, -365) sets d2 to 20011031) 
 
SUB 
d3 = Date.Sub(d1, d2) 
Gives the number of days between d1 and d2. 
d3 = Date.Sub(20021102, 20021031) sets d3 to 2. 
 
WEEKDAY 
Gets the day of the week for a the date; Sunday is day 0. 
d1 = Date.WeekDay(20021029) sets d1 to 2 (Tuesday) 
 
YEARDAY 
Gets the day in the year for a date. 
d1 = Date.YearDay(20021029) sets d1 to 302. 
d1 = Date.YearDay(20021231) sets d1 to 365 
 
 
WEEKNUM 



Windows PowerPro Page 168 Version 3.7 

Gets the week number in the year.  The week number definition follows the ISO standard:  Week 
1 of any year is the week that contains 4 January, or equivalently Week 1 of any year is the week 
that contains the first Thursday in January. 
d1 = Date.WeekNum(20021029) sets d1 to 44 
 
GET 
d1 = Date.Get 
Displays a calendar and returns selected date.  Returns 0 if Cancel pressed. 
 
 



Windows PowerPro Page 169 Version 3.7 

 
EVENT PLUGIN  (Version 2003 01 01) 
 
OVERVIEW 
 
The event plugin lets you schedule commands to execute repeatedly at a specified interval.  You 
can optionally specify the number of times the event should repeat.  You can optionally specify a 
test expression; if specified, the plugin evaluates this test expression each interval and only 
executes the command if the expression is not 0 or "". 
 
The event plugin is a more flexible alternative to the wait command and to timers. 
 
The event plugin can support at most 50 simultaneously active events. 
 
 
LIST OF SERVICES 
 
event.create       Creates a new event and returns its handle. 
event.createms     Creates a new event based on an interval in 
milliseconds and returns its handle. 
event.destroy      Removes the specified event. 
event.destroyall   Removes all active events. 
event.destroythis  When used in an event's associated command, removes 
the event. 
event.exists       Returns 1 if event exists; 0 otherwise. 
event.this         When used in an event's associated command, returns 
the event's handle. 
event.count        Returns remaining number of times event will execute. 
event.countthis    When used in an event's associated command, returns 
remaining number of times event will execute. 
 
 
DESCRIPTION OF SERVICES 
 
In the following descriptions, e is an event, s is an interval in seconds, m is an interval in 
milliseconds, c is an integer count, cmd is a string containing a PowerPro command or file to be 
run, and expr is a PowerPro expression. 
 
In commands and expressions, you must precede the expression follows character (eg &) and 
the double quotation by a single quote '.  For example, the following creates an event which 
shows the event count if notepad is active. 
 
event.create(1,100,"debug '&(event.countthis)", "visiblewindow('"*notepad*'")" 
 
Note how the & and the "s in the expression are preceded by ' so that this characters are not 
processed until the event occurs. 
 
You can use multiple commands in the command by separating each command with 'r.  For 
example, 
event.create(3,0,"debug '&(var1)'r if (shift)'r event.destroythis") 
creates an event which shows var1 in a debug window until shift is pressed upon which the event 
is removed. 
 
 
CREATE 



Windows PowerPro Page 170 Version 3.7 

 
e=event.create(s,c,cmd,expr) 
Creates an event which repeats every s seconds.  Returns a handle greater than zero which can 
be used to refer to the event.  If c is greater than zero, after c occurrences, the event is removed  
If c is zero, event continues until removed by an event.destroy.   The string cmd specifies a 
command to be executed after each interval.  The expression expr may be omitted, in which case 
the cmd is always executed.  If the expr is specified, than it is evaluated after each interval and 
the cmd is only executed if the result is not 0 and not "".  If you specify and count and an 
expression, the count _is_ decremented whether or not the command is executed; this way, the 
count can act as a watchdog to end the event in case the expression is never true. 
 
For example, 
 
e=event.create(3,0,"debug &(testvar)") 
 
creates an event which shows the variable testvar in a debug window once every 3 seconds.  
The event continues indefinitely.  For example. 
 
e=event.create(2,10,"keys abc'r event.destroythis", '+ 
   "visiblewindow('"*notepad*'")") 
 
creates an event which checks for a visible notepad window, sends key abc to it, and then ends..  
The event continues until notepad appears or 20 seconds elapse.  Note how '+ is used to extend 
the command over two lines (for scripts in files). 
 
 
CREATEMS 
e=event.createms(m,c,cmd,expr) 
Same as create, except that the interval is specified in milliseconds.  The minimum is 20 
milliseconds. 
 
DESTROY 
e=event.destroy(e) 
Removes event e and returns zero which can be assigned to a variable to set it to an invalid 
event handle. 
 
DESTROYTHIS 
event.destroythis 
Must be used in the command assigned to an event when it is created.  If executed, removes the 
command. 
 
DESTROYALL 
event.destroyall 
Removes all active events. 
 
THIS 
Must be used in the command assigned to an event when it is created.  Returns the event 
handle. 
create(1,20,".myscript(event.this)", "visiblewindow('"=winword'")") 
creates an event which calls script file myscript with argument equal to event handle when MS 
word has a visible window.  Event will run at most 20 seconds. 
 
EXISTS 
event.exists(e) 
Returns 1 if e is a valid event; 0 otherwise. 
 



Windows PowerPro Page 171 Version 3.7 

COUNT 
event.count(e) 
Returns the number of intervals remaining for an event scheduled with a count. 
 
COUNTTHIS 
event.countthis 
Must be used in the command assigned to an event when it is created.  Returns the number of 
intervals remaining for the event. 
create(1,10,"debug &(event.countthis)") 
creates an event which displays a countdown 9,...0 in the debug window. 
 



Windows PowerPro Page 172 Version 3.7 

 
FILE PLUGIN  (Version 2003 01 19) 
 
OVERVIEW 
 
The file plugin lets you read and write text to files.  The services provided by the plugin allow you 
to open files, read or write to them, and then close files.  This can be more efficient than the built 
in PowerPro functions readline and *Exec ToFile since the built-in routines close and re-open the 
file with each operation. 
 
The plugin can only handle text files with lines terminated by a newline (NL) or Carriage Return 
(CR)-NL pair.  Neither CR nor NLs are returned by the plugin. 
 
The plugin can handle long lines of text.  You specify the maximum line length with 
file.setmaxline; the default starting maximum line length is 4K characters. 
 
The plugin allows a maximum of 15 files to be open simultaneously. 
 
LIST OF SERVICES 
 
For this list, the following standard variable names are used: 
 
fh is used to identify the File Handle:  a integer assigned by the plugin service open when a file is 
opened. 
 
 
str is used to identify a string or a variable holding a string. 
 
The following is a list of services 
open        opens a file and returns a File Handle used subsequently to 
access the file. 
close       closes the file and frees the file handle 
closeall    closes all open files 
restart     restarts reading or writing of a file from the beginning 
readline    reads and returns next line from file 
eof         returns 1 if last read encountered eof; 0 otherwise 
writeline   writes a string and following CR-NL 
writestring writes the string but does not output a CR-NL 
setmaxline  set maximum line length for subsequent calls to 
file.readline 
 
 
Following is a more detailed explanation of each service. 
 
OPEN 
fh = File.Open(str1, str2) 
 
The Open service opens the file with path given in str1. The second string, str2, must be one of 
"r"  opens the file to be read 
"w"  opens the file to be written; will be overwritten if it exists 
"a"  opens the file to have new information written after existing information 
 
The variable fh is set to a positive integer which must be saved and used in subsequent file 
operations.  If an error is encountered while opening a file, fh is set to 0 or a negative integer. 
 



Windows PowerPro Page 173 Version 3.7 

CLOSE 
File.Close(fh) 
Closes the file given by fh. 
 
CLOSEALL 
File.CloseAll 
Closes all open files. 
 
RESTART 
File.Restart(fh) 
Next operation will occur at start of file. 
 
READLINE 
str = File.Readline(fh) 
Reads the next line of the file and returns it to be assigned to str.  The maximum line length starts 
at 4K characters but can be set as large as 64K characters with file.setmaxline. 
 
SETMAXLINE 
File.SetMaxLine(n) 
Sets maximum line length for subsequent file.readline calls.  If n <264, 264 is used.  If n>64K,  
64K is used. 
 
EOF 
File.Eof(fh) 
Returns 1 if last read encountered an eof; 0 otherwise.  The standard way to read a file line-by-
line is: 
fh = File.Open(strPath, "r") 
if (fh > 0) Do 
   for (lineNum=1;1;LineNum=LineNum+1) 
      str = File.ReadLine(fh) 
      if (File.Eof(fh)) 
         break 
      ;  process the file line in variable str 
   endfor 
else 
   MessageBox ("ok", "Error opening file "++strPath) 
endif 
 
 
 
 
 
 
WRITELINE 
File.WriteLine(fh, str) 
Writes the line given in str to the file, adding a CR-NL to make a complete line.  YOu can also use 
File.WriteLine(fh, "") 
to write just a CR-NL and terminate any lines partially written with File.WriteString. 
 
WRITESTRING 
File.WriteString(fh, str) 
Writes the string str to the file with no terminating CR-NL.  Subsequents WriteLine or WriteString 
will add text to same line. 
 
 
 



Windows PowerPro Page 174 Version 3.7 

 
EXAMPLE 
The following script prompts for a file path, then copies the file at that path to c:\textout.txt.  Each 
line in the output is prepended by three asterisks (***). 
 
fp = file.open(inputpath,"r") 
if (fp>0) do 
   fpout = file.open("c:\textout.txt", "w") 
   if (fpout>0) Do 
      for (1) 
        line = file.readLine(fp) 
        if (file.eof(fp)) 
           break 
        file.writeString(fpout, "***") 
        file.writeLine(fpout, line) 
      endfor 
      file.close(fpout) 
 
   else 
      Debug cannot open out &(fpout) 
   endif 
   file.close(fp) 
 
else 
   debug cannot open in &(fp) 
endif



Windows PowerPro Page 175 Version 3.7 

 
FLOAT PLUGIN  (Version 2002 10 28) 
 
OVERVIEW 
 
The float plugin lets you do arithmetic with floating point numbers, like 14.567 or 2.3e-6. 
 
Floating point numbers are not directly supported by PowerPro, so you must put any numbers 
with a decimal points in quotes when you use the float plugin.  Quotes are optional for numbers 
without decimal places.  For example, float.add("1.718", 2) yields "3.718".  You can use both 
decimal points and the exponent notation with numbers, for example 
 
"0.00021" is the same number as "2.1e-3" 
 
Since floating point numbers are stored as strings, the plugin has to convert the numbers to and 
from strings when working with them.  This means that this is not a very efficient way to do 
arithmetic.  But is good enough for casual use in a PowerPro script. 
 
LIST OF SERVICES 
 
Float.Add        Adds two to nine nine numbers and returns result in 
string. 
Float.Sub        Subtracts two numbers. 
Float.Mul        Multiplies two to nine numbers. 
Float.Divide     Divides two numbers. 
Float.Compare    Compares two numbers, returning -1, 0, or 1. 
Float.Ceiling    Returns smallest whole number which is greater than 
input 
Float.Truncate   Returns the smallest whole number which is less than 
input 
Float.Display    Returns float number rounded and without "e" notation; 
specify total digits 
Float.DisplayDec Returns float number rounded and without "e" notation; 
specify digits after decimal point 
 
DESCRIPTION OF SERVICES 
 
In the following descriptions, r1, r2, r3, r9 are floating point numbers. 
 
ADD 
r3 = Float.Add(r1, r2, ..., r9) 
Adds up to nine numbers and returns result. 
For example 
r1 = Float.Add("1.1", "2.2", "3.3") sets r1 to "6.6". 
r2 = Float.Add(8, r1)  sets r2 to "14.6". 
 
SUB 
r3 = Float.Sub(r1,r2) 
sets r3 = r1-r2. 
 
MUL 
r3 = Float.Mul(r1, r2, ..., r9) 
Multiplies up to nine numbers. 
For example 
r3 = Float.Mul("0.5", "0.25") 



Windows PowerPro Page 176 Version 3.7 

sets r3 to "0.125" 
 
DIVIDE 
r3 = Float.Divide(r1,r2) 
Sets r3 = r1/r2. 
 
COMPARE 
n1 = Float.Compare(r1,r2) 
Sets n1 = -1 if r1<r2, 0 if r1==r2, 1 otherwise. 
 
CEILING 
n1 = Float.Ceiling(r1) 
Sets n1 to next whole number larger than r1. 
 
TRUNCATE 
n1 = Float.Truncate(r1) 
Sets n1 to next whole number smaller than r1. 
To round a number, you can use Float.Truncate(Float.Add(r1,"0.5")) 
 
DISPLAY 
r2 = Float.Display(r1,ndig) 
Returns r2 with n significant digits.  The e notation will not be used.  ndig must <=25. 
 
DISPLAYDEC 
 
r2 = Float.DisplayDec(r1,ndig) 
Returns r2 with n digits after the decimal point.  The e notation will not be used.  ndig must <=25. 



Windows PowerPro Page 177 Version 3.7 

 
Sample PLUGIN  (Version 2002 12 22) 
 
OVERVIEW 
 
The sample plugin provides a sample of how to write plugin services. 
 
 
 
DESCRIPTION OF SERVICES 
 
showmenu(str)         shows a menu with name in str 
echo(a1,a2)           echoes up to 8 arguments 
okcancel(msg,title)   shows an ok/cancel messagebox and returns the 
result. 
 



Windows PowerPro Page 178 Version 3.7 

 
VEC PLUGIN  (Version 2002 12 28) 
 
OVERVIEW 
 
The vec plugin lets you work with single-dimension arrays, ie vectors. 
 
You create an array with the vec.create function which returns a handle to use in subsequent 
calls to vec.  Handles are always greater than 0. You can then set elements with vec.set, retrieve 
them with vec.get. 
 
Vectors have a size, called a capacity.  This capacity is the number of elements the vector can 
contain.  You  specify the starting capacity  of the vector when it is created.  You can 
subsequently grow the vector, either automatically when you attempt to set element one larger 
than the capacity, or manually, with the vec.grow call. 
 
Vectors are indexed starting at 0 to their capacity-1.  If you retrieve elements which have not 
been assigned a value, vec returns "" for the value. 
 
You can insert new elements in the array with vec.insert, which moves all existing elements up to 
to create an empty space for the inserted element.  You can delete an element and move existing 
elements down. 
 
You can retrieve the current capacity of an array with vec.capacity. You can retrieve the current 
used length with vec.length.  The length is the index+1 of the largest set element.  There can be 
unassigned elements with index less then the length. 
 
When you overwrite an vector element with a new string value, the vec plugin will attempt to 
reuse the existing memory of the overwritten element if there is enough room for the new string.  
This helps reduce memory fragmentation.  You can specify a minimum number of bytes for each 
element in the vec.create call to help reduce fragementation this way if you plan to make many 
changes to array elements. 
 
The vec plugin can support at most 25 simultaneously active vectors. 
 
 
LIST OF SERVICES 
 
vec.create       Creates a new vector and returns its handle. 
vec.destroy      De-allocates all the vectors memory and frees its 
handle. 
vec.exists       Returns 1 if vector exists; 0 otherwise. 
vec.set          Set an element, overwriting anything value at specified 
index. 
vec.get          Retrieves string at specified index. 
vec.insert       Inserts new element in vector by moving elements up 
one. 
vec.delete       Removes element from vector and moves elements done 
one. 
vec.grow         Grows capacity of vector by specified amount. 
vec.capacity     Returns capacity of vector. 
vec.length       Returns length of vector 
vec.sort         Sorts vector ascending. 
 
 



Windows PowerPro Page 179 Version 3.7 

DESCRIPTION OF SERVICES 
 
In the following descriptions, v is s vector, i an integer>=0, s a string. 
 
CREATE 
v= vec.create(capacity, growth, minsize) 
Creates a vector with specified capacity.  If growth is >0, the vector will be grown automatically if 
you set or insert element with index equal to capacity.  (Attempts to set or get an index greater 
than capacity are in error). 
 
If you specify minsize, all elements will be allocated at least this much memory, which will be re-
used if any new string is written to the element which requires no more memory. 
 
Both growth and minsize can be omitted, in which case they are assumed to be zero. 
 
The vec plugin can support at most 25 simultaneously active vectors. 
 
DESTROY 
v=vec.destroy(v) 
Frees all memory assigned to v and its elements and frees the handle for use for another vector.  
Returns 0 which you can then assign to v to indicate that v is no longer a valid vector. 
 
EXISTS 
vec.exists(v) 
Returns 1 if v is a valid vector; 0 otherwise. 
 
 
SET 
vec.set(v,i,s) 
Assigns the string s to element i of vec v.  Indexes start at zero. If i>=vec.length, then the vector 
length is assigned i+1.  If i==vec.capacity, and growth is bigger than 0, then vec will grow the 
vector by growth elements to accomodate the new element.  Indexes i<0 or i>vec.capacity are in 
error and will elicit an error message from vec. 
 
GET 
s=vec.get(v,i) 
Retrieves element i of vec v and assigns it to s.  Indexes start at zero. Access to unassigned 
elements < vec.capacity return "". Indexes i<0 or i>=vec.capacity are in error and will elicit an 
error message from vec. 
 
INSERT 
vec.insert(v,i,s) 
Moves all elements starting at i up one, and then assigns the string s to element i of vec v.  
Indexes start at zero. If the vector is already at capacity and the growth is > 0, then vec will grow 
the vector by growth elements to accomodate the new element.  Indexes i<0 or i>vec.capacity 
are in error and will elicit an error message from vec. Vec.length increases by 1. 
 
DELETE 
vec.delete(v,i) 
Moves all elements starting at i down one, deleting the element at i.  Vec.length decreases by 1. 
 
GROW 
Vec.grow(v,growth) 
Adds growth elements to the capacity of v. 
 
CAPACITY 



Windows PowerPro Page 180 Version 3.7 

n=vec.capacity(v) 
Sets n to current capacity of vector v. 
 
LENGTH 
len=vec.length(v).  Sets len to current length of v.  The length is one greater than the index of the 
highest set element. 
 
SORT 
vec.sort(v) 
Sorts v in ascending order. 
 
 
EXAMPLES 
 
The following example reads in file c:\sortme.txt, sorts it, and writes it to c:\sorted.txt. 
 
han = file.open("c:\sortme.txt","r") 
v = vec.create(200,100) 
for (i=0;1;i=i+1) 
   line = file.readline(han) 
   if (file.eof(han)) 
      break 
   vec.set(v,i,line) 
endfor 
file.close(han) 
 
vec.sort(v) 
 
han=file.open("c:\sorted.txt", "w") 
for (i=0; i<vec.length(v); i=i+1) 
   file.writeline(han,vec.get(v,i)) 
endfor 
file.close(han) 
vec.destroy(v) 
 
 
 
 



Windows PowerPro Page 181 Version 3.7 

 
WIN PLUGIN  (Version 2002 12 22) 
 
OVERVIEW 
 
The win plugin retrieves information about a window or its child windows.  It can also manipulate 
windows. 
 
 
 
DESCRIPTION OF SERVICES 
 
In the following descriptions, cl is a caption list as defined in the PowerPro help.  Note that this 
means it could be window handle, since a window handle is a valid captionlist. 
 
 
left(cl)       returns left window coordinate of first visible window 
matching cl 
right(cl)      returns right window coordinate of first visible window 
matching cl 
top(cl)        returns top window coordinate of first visible window 
matching cl 
bottom(cl)     returns bottom window coordinate of first visible window 
matching cl 
 
width(cl)      returns width first visible window matching cl 
height(cl)     returns height of first visible window matching cl 
 
handle(cl)     returns window handle of first visible window matching cl 
handleatpoint(x,y)     returns window handle ofwindow at under screen 
position x,y 
handlelist(cl, inv)    return blank separate list of window handles 
matching cl.  Set inv to 1 to include hidden windows. 
 
caption(cl)    returns window caption of first visible window matching 
cl 
class(cl)      returns window class of first visible window matching cl 
exepath(cl)    returns full path to exe of first visible window matching 
cl 
 
maxxed(cl)     returns 1 if first visible window matching cl is 
maximized, 0 otherwise 
minned(cl)     returns 1 if first visible window matching cl is 
minimized, 0 otherwise 
topmost(cl)    returns 1 if first visible window matching cl is topmost, 
0 otherwise 
rolled(cl)     returns 1 if first visible window matching cl is rolled-
up, 0 otherwise 
trayminned(cl) returns 1 if first visible window matching cl is tray-
minned, 0 otherwise 
 
resizable(cl)  returns 1 if first visible window matching cl is 
resizable, 0 otherwise 
maxable(cl)    returns 1 if first visible window matching cl has 
maximize box, 0 otherwise 



Windows PowerPro Page 182 Version 3.7 

minable(cl)    returns 1 if first visible window matching cl has 
minimize box, 0 otherwise 
toolwindow(cl) returns 1 if first visible window matching cl is 
toolwindow, 0 otherwise 
 
close(cl)      closes first visible window matching cl 
closeforce(cl) closes first visible window matching cl, unsaved 
information is lost 
rollup(cl)     rolls up visible window matching cl; unrolls if already 
is rolled up 
traymin(cl)    tray minimizes first visible window matching cl; un tray 
mins if already is 
ontop(cl)      makes first visible window matching cl topmost; removes 
topmost if it already is 
 
show(cl)       shows first window matching cl 
hide(cl)       hides first visible window matching cl 
minimize(cl)   minimizes first visible window matching cl 
maximize(cl)   maximizes first visible window matching cl 
restore(cl)    restore first visible window matching cl 
 
move(cl,x,y)   moves first visible window matching cl to position x, y; 
size(cl,x,y)   sizes first visible window mathcing cl to size x,y 
 
sendkeys(sz)   sends keys in string sz to active window 
 
debug(sz1, sz2) up to 6 arguments can be specified; they are joined and 
shown in a debug window. 
 
sendmessage(han, msg, wp, lp)  sends message msg to window with handle 
han 
postmessage(han, msg, wp, lp)  posts message msg to window with handle 
han 
 
 
 
childtextbyindex(cl,n) 
returns the text in the nth childwindow of first window matching cl.  If 
there are less than n child windows, sets variable _EOF_ to 1; else sets 
_EOF_ to 0. 



Windows PowerPro Page 183 Version 3.7 

RegEx Plugin (12/26/02 Version) 
Coded by: Julien Pierrehumbert 
 
This package includes a GNU PCRE-compatible regex library (pcre.dll) and a PowerPro plugin 
(regex.dll) which works as an interface between PP and that library. 
The source is of course included. Simply change the first #include to compile it with another 
POSIX-like regex library (like GNU's rx). 
 
I hope that distributing GNU stuff this way is not a war crime. Anyway, you'll find all the licenses, 
documentation, and stuff alongside the lastest version of the library at: 
http://gnuwin32.sourceforge.net/ 
 
 
Usage: 
 
To execute the plugin, put it in PowerPro's folder alongside pcre.dll and use: 
regex-match(string,regular_expression,replacement_string) 
or 
regex.replace(string,regular_expression,replacement_string) 
or 
regex.matchg(string,regular_expression,replacement_string) 
or 
regex.replaceg(string,regular_expression,replacement_string) 
 
For case insensitive treatment, put (?i) in front of the regular_expression. 
 
In addition to the return code, the plugin will create a string, which will be placed in the PP 
variable "rx_output". 
 
 
Return Codes: 
  
0 Full Match 
1 Partial Match 
2 No Match 
3 Error: Output Too Long 
8 Error: Invalid Pattern 
9 Error: Invalid Input 
 
 
Known issues: 
 
Using lookbacks (a PCRE-specific feature) with the global services might lead to unexpected 
results. 
 
 
Contacting the author: 
 
If you don't have my email address, use the list. 
 
 
Legalese: 
 

Do whatever you want with the program and the source. I decline any responsibility. 



Windows PowerPro Page 184 Version 3.7 

Following is documentation of the previous version of the regex plugin (which used a different 
syntax) 

 

REGEX plug-in syntax (PowerPro 3.4) 
Table of Contents  

 
Quick start  
Description  
Installation  

Usage  
Input  

Services  
Output  

Return codes - simple examples  
Detailed examples: MATCH/MATCHG  

Detailed examples: REPLACE/REPLACEG  
REGEX plug-in test script  

Getting started with Regular Expressions  
Final words  

 

 

 

• Quick start:  

If you're familiar with PowerPro and its plug-ins, here is a quick start with everything 
you need to know. But you're still advised to read the entire document and get 
acquainted with important details. If you're not familiar at all with PowerPro and its 
plug-ins and/or want the full explanation, then you should definitely skip this first table 
and read all the rest:  
 
 

  

REGEX plug-in syntax (PowerPro 3.4):  
 
*Exec Plugin regex service  
or:  
some_variable = regex ("regex", "service")  
 
Examples:  
*Exec Plugin regex match  
x0 = plugin ("regex", "replace")  

 
REGEX plug-in syntax (PowerPro 3.5):  
This syntax has NOT been implemented yet by the plug-in.  
 
some_variable = regex ("regex", "service")  
or:  
dll.service("arguments")  
 
Examples:  
x0 = plugin ("regex", "matchg")  

  



Windows PowerPro Page 185 Version 3.7 

regex.replaceg("rx_string", "rx_pattern", "rx_replace")  
 

Services:  
match = match first occurrence  
matchg = match all occurrences  
replace = replace first occurrence  
replaceg = replace all occurrences  

 
Input variables:  
rx_string = the string to be parsed  
rx_pattern = the pattern to be applied on the string  
rx_replace = the replacement string  

 
Output variables:  
rx_return = numeric return code (click here)  
rx_output = transformed (or not) string  

• Description:  

The REGEX plug-in makes it possible to parse short strings with PowerPro, as a 
standalone operation (to test a regular expression, for example) or in the context of a 
PowerPro script. PowerPro already provides native functions to select, remove or 
replace characters in a string, but these native functions are somewhat limited because 
they rely on predictive characteristics, not available in every situation. Only regular 
expressions, provided with this handy plug-in, can truly find, match and replace any 
possible pattern. Another excellent thing about this plug-in is that it supports PCRE 
(Perl-Compatible Regular Expressions), thus allowing even more flexible and accurate 
patterns.  
This special functionality is added to PowerPro with two DLLs: pcre.dll, a GNU library 
written by Philip Hazel, and regex.dll, written by Julien Pierrehumbert. The latter 
should be called with PowerPro every time a single match and/or replace operation is 
desired, using the correct syntax provided below. PowerPro can work with probably any 
custom-made DLL, making its full range of functionalities virtually unlimited. Note that 
it is possible to change the first #include in the source code of pcre.dll to compile it 
with another POSIX-like regex library, like GNU rx. Further information regarding 
licenses, documentation and sources of GNU libraries can be found at: 
http://gnuwin32.sourceforge.net/.  
 

 

 

• Installation:  

Just copy pcre.dll and regex.dll to PowerPro's base directory, as explained in the 
chapter about plug-ins of PowerPro's documentation.  
 

 

 

• Usage:  

  WARNING!    

http://gnuwin32.sourceforge.net/


Windows PowerPro Page 186 Version 3.7 

 
All syntax, usage and behavior described here applies to PowerPro 3.4. A lot of it 
is likely to change in version 3.5.  

Any given PowerPro plug-in can offer several different and even unrelated 
functionalities, called "services". The REGEX plug-in has four services: match, 
replace, matchg and replaceg. As explained in PowerPro's documentation, any plug-in 
is called this way:  
*Exec Plugin plug-in service  
So there are four possible ways to call the REGEX plug-in, one for each service:  
 
*Exec Plugin regex match  
 
*Exec Plugin regex replace  
 
*Exec Plugin regex matchg  
 
*Exec Plugin regex replaceg  
 

Actually, after PowerPro version 3.4.0, the syntax above became deprecated. You may 
therefore feel tempted to use the new syntax:  
 
x0 = plugin ("regex", "match")  
 
x0 = plugin ("regex", "replace")  
 
x0 = plugin ("regex", "matchg")  
 
x0 = plugin ("regex", "replaceg")  
 
 
The new syntax introduces plugin as a function that returns a value and assigns it to the 
special x0 variable. If you're familiar with PowerPro plug-ins and the instructions 
provided in the manual, you would think the return value will be assigned to x0 anyway 
so we don't need to assign the function to x0. Such assumption makes sense, but:  
 
- PowerPro's syntax does not allow the use of a function without a variable assignment. 
If you try, for example,  
 
                plugin ("regex, "match")  
 
PowerPro will think that "plugin" is a command, which does not exist, and will 
generate an error message. We have to assign the plugin function to a variable. 
Assigning it to x0 may seem redundant, but it works;  
 
- if you're familiar with PowerPro plug-ins and the instructions provided in the manual, 
however, it may not work quite as expected. The manual says that the function's output 
will be assigned to the x0 variable automatically, and that is not entirely true because 
the plug-in must comply with such standard for this behavior to occur. The REGEX 
plug-in does not comply. It sends output to the rx_return and rx_output variables 
instead, so the x0 variable will be empty and useless even after the assignment. So, 
although it is not necessary, you may want to avoid using the x0 variable and create a 
new variable like, say, "void_var":  
 
 



Windows PowerPro Page 187 Version 3.7 

  

void_var = plugin ("regex", "match")  
 
void_var = plugin ("regex", "replace")  
 
void_var = plugin ("regex", "matchg")  
 
void_var = plugin ("regex", "replaceg")  

  

 
 
Feel free to use any other name instead of void_var to remind you that this is an empty 
variable, or just keep using x0. So long as you assign the plugin function to a variable.  
 

 

 
 

• Input:  

Of course, the REGEX plug-in cannot do anything until it is given some input. This is 
provided by means of three PowerPro variables:  

• rx_string  

• rx_pattern  

• rx_replace  

You must create these variables in PowerPro's namespace and assign them values 
before the plug-in is called. Only rx_replace can be neglected in some cases (if you're 
only interested in the return code's value, for example). Here is the description of each 
variable's role:  
 
 

  

rx_string should contain the string that you want to analyze, i.e. the 
string on which the regular expression will be applied;  
 
rx_pattern should contain the regular expression that will be 
applied on the subject string;  
 
rx_replace should contain the replacement string, i.e. the string that 
is going to replace whatever portion of the subject string (rx_string) 
that is matched by the regular expression (rx_pattern).  

  

 
 
Here is a very simple but practical example:  
 
rx_string = "Mary had a little lamb"  
rx_pattern = "lamb"  
rx_replace = "dog"  
void_var = plugin ("regex", "replace")  
 
Output => "Mary had a little dog"  
 



Windows PowerPro Page 188 Version 3.7 

Plain English: take the phrase "Mary had a little lamb", take the first occurrence of the 
word "lamb" and replace it with the word "dog".  
 
 
Yet another example:  
 
rx_string = "Mary had 52 little lambs"  
rx_pattern = "[0-9]+"  
rx_replace = "many"  
 
Output => "Mary had many little lambs"  
 
Plain English: take the phrase "Mary had 52 little lambs", take the first occurrence of a 
number with one or more digits ("52") and replace it with the word "many".  
 
Much more complex match and/or replace operations can be made, but these require 
good knowledge of Regular Expressions syntax, which will not be explained in this 
document. It is fairly easy to find information about it all over the Web. There are a few 
variations of RegEx, so you're advised to look for "extended Regular Expressions" or 
"Perl-Compatible Regular Expressions". See the links provided at the end of this 
document (click here). PCRE have more features and are a bit more complex, but 
provide greater flexibility and accuracy. If you're familiar with PCRE and are eager to 
test it, go ahead! It works! If you're not familiar with PCRE, you can safely use regular 
expressions that do not include PCRE without the risk of incurring any incompatibility 
issue.  
 

 

 
 

• Services:  

The REGEX plug-in has four services: match, matchg, replace and replaceg.  
 
 

match 

"MATCH" operation.  
Checks whether rx_string contains any portion that matches 
rx_pattern.  
The check is performed only once, so the first match only is 
found. The result of the operation is stored automatically in two 
output variables*. 

matchg 

"MATCH GLOBAL" operation.  
Checks whether rx_string contains any portion that matches 
rx_pattern.  
The check is performed several times if necessary, until all 
possible matches are found. The result of the operation is stored 
automatically in two output variables*. 

replace 
"REPLACE" operation.  
Checks whether rx_string contains any portion that matches 
rx_pattern.  



Windows PowerPro Page 189 Version 3.7 

If any match is found, the first occurrence of that match is 
replaced with the text stored in rx_replace. The result of the 
operation is stored automatically in two output variables*. 

replaceg 

"REPLACE GLOBAL" operation.  
Checks whether rx_string contains any portion that matches 
rx_pattern.  
If any match is found, every occurrence of that match is replaced 
with the text stored in rx_replace. The result of the operation is stored 
automatically in two output variables*. 

* Detailed information on the output variables is provided below, in the "Output" section.  

 

 
 

 
 

• Output:  

After the input variables are provided and the REGEX plug-in is run, it returns two 
useful values in two automatic variables:  

• rx_return  

• rx_output  

  

rx_return contains the result of the expression's evaluation, in the 
form of a return code. Here is the meaning of each possible code:  
 
0   =   Full Match  
1   =   Partial Match  
2   =   No Match  
3   =   Error: Output Too Long  
8   =   Error: Invalid Pattern  
9   =   Error: No Input  
 
A better explanation of each return code is given in the table 
"Return Codes - Simple Examples" below.  
 
rx_output contains the output of the match or replace operation, 
i.e. an actual string that may be an exact copy of the original subject 
string, only part of it or a whole new string created by whatever 
values have been assigned to rx_string, rx_pattern and 
rx_replace.  

  

 
 
 



Windows PowerPro Page 190 Version 3.7 

In other words...  
 
rx_return is the variable that will tell you what happened after the plug-in was run. It 
informs you (and the running script) whether or not there was a successful match in the 
operation.  
 
- If you are replacing things in a string (rx_string), rx_output is the variable that will 
contain the original text, modified by the plug-in after looking for a given pattern 
(rx_pattern) in it and replacing everything that matches that pattern with some other 
text (rx_replace). Depending on what you feed the variables, many or no modifications 
at all may apply, turning the output string rx_output into something slightly different 
from the original string rx_string, completely different from the original string 
rx_string or leaving it just the way it was.  
- If you are not replacing anything in a string, i.e. if you're just matching, rx_output is 
the variable that will contain what was matched by rx_pattern. This statement is in fact 
not true, but pretend it is for the time being and move on. This issue and the actual 
mechanism required to find a match will be explained later.  
 
Note that neither do you need nor should you create the rx_return and rx_output 
variables. These are created by the REGEX plug-in automatically as soon as it is run.  
 
 
 
 

Return Codes - Simple Examples 

Return 
code 

Meaning Description 

0 Full Match 

•  The pattern assigned to the rx_pattern variable matches the string 
assigned to the rx_string variable completely, i.e. they are exactly the 
same.  
 
Example:  
rx_string = "223557864"  
rx_pattern = "[0-9]+"  
 
rx_return = 0  
 
The pattern looks for a sequence with one or more numbers and nothing 
else, so the entire string matches the pattern.  

1 
Partial 
Match 

•  Part of the string assigned to the rx_string variable matches the pattern 
assigned to the rx_pattern variable.  
 
Example:  
rx_string = "Today is 24/09/2002 03:28"  
rx_pattern = "[0-9]+"  
 
rx_return = 1  
 
The pattern looks for a sequence with one or more numbers and nothing 
else. "Today is ", the slashes, the colon and the spaces do not match, so 
only a few portions of string match the pattern.  

2 No Match 

•  No part whatsoever of the string assigned to the rx_string variable 
matches the pattern assigned to the rx_pattern variable.  
 
Example:  



Windows PowerPro Page 191 Version 3.7 

rx_string = "Today is 24/09/2002 03:28"  
rx_pattern = ".* anytime!"  
 
rx_return = 2  
 
The pattern looks for any sequence of characters (.*) followed by a space, 
the word "anytime" and an exclamation point. The exclamation point alone 
is enough to ruin all matching possibilities. The word "anytime" is not 
present in rx_string either, so there is no match at all.  

3 
Error: 
Output 

Too Long 

•  The output, i.e. the resulting string cannot be obtained because it 
exceeds the 263-character limit.  
 
Example:  
rx_string = "Today is 24/09/2002 03:28"  
rx_pattern = "[0-9]"  
rx_replace = "doo-be-doo-be-doo, it's the crazy Asian Y2Khai"  
 
rx_return = 3  
 
According to the PowerPro manual, in the "Expressions" page, "PowerPro 
supports strings of up to 263 characters; longer strings are 
truncated to this length".  
The pattern looks for single occurrences of any number and nothing else. 
rx_replace in the third line causes every single occurrence of a number to 
be replaced with a rather long phrase. There are twelve occurrences of a 
number in the original string (24, 09, 2002, 03 and 28), so the long 
phrase will occur twelve times in the output string. The output string is 
therefore too long and cannot be displayed due to limitations in PowerPro's 
design.  

8 
Error: 
Invalid 
Pattern 

•  The pattern assigned to rx_pattern is invalid according to Regular 
Expressions syntax rules.  
 
Example:  
rx_string = "Today is 24/09/2002 03:28"  
rx_pattern = "(open parentheses... [or brackets..."  
 
rx_return = 8  
 
Not closing or escaping opened parentheses, for example, is a mistake 
according to Regular Expressions syntax rules. The REGEX plug-in cannot 
process an incorrect regular expression, so it aborts the operation and 
returns the corresponding error code.  

9 
Error: No 

Input 

•  There is no input to handle.  
 
Example:  
rx_string = ""  
rx_pattern = ""  
 
rx_return = 9  
 
Neither rx_string nor rx_pattern can be left empty. If either is omitted, 
the REGEX plug-in does not have enough data to evaluate and do its job.  

 

 



Windows PowerPro Page 192 Version 3.7 

 

 

• Detailed examples:  

Let's see practical examples of each service, their behavior, return code and output in 
detail. You can always try your own examples with the REGEX plug-in test script, 
provided at the end of this document. Click here to take a look at it now, then press the 
browser's "Back" button to come back to this point. You may want to copy the test 
script, then run it as you read each example and try it yourself.  
 
MATCH/MATCHG:  
 
We use the match and match global services to check whether some text contains any 
sequence of characters, like words, phrases, numbers or symbols. You'd better keep two 
things in mind when using these services:  
 
 

  

1. Return code  0  denotes a full match,  1  denotes a partial match and  2  
denotes no match. Any number higher than these denote errors;  

2. the match and match global services also have some replace-like 
behavior.  

  

The first point is relevant if you just want to test the presence of some pattern in a string 
and don't need to know exactly what was matched.  
 
The second point is relevant if you want to use the portion of the string that matches 
rx_pattern. That's due to the perhaps unexpected behavior of the REGEX plug-in, 
placing in the output the replacement string rx_replace, which the user himself has just 
inserted, whenever a match is found. For example:  

Plain English: take the phrase "Today is 24/09/2002, 03:28", check if it contains the pattern 
"[0-9]{4}", i.e. a sequence of exactly four digits, and obtain the matched portion so as to verify 
exactly what four-digit number was found.  
 
rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "[0-9]{4}"  
rx_replace = ""  
void_var = plugin ("regex", "match")  
 
rx_return =>  1   
rx_output =>    

 
Hmmm... something is not right. Part of the string matches the pattern, so rx_return is 
 1 . But the output is empty. Why? Because the replacement string rx_replace is 
empty! Let's try again:  

rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "[0-9]{4}"  
rx_replace = "XXX"  
void_var = plugin ("regex", "match")  
 
rx_return =>  1   



Windows PowerPro Page 193 Version 3.7 

rx_output => XXX  

 
OK... so rx_replace becomes rx_output. But we're just matching. We're not replacing. 
Return code is  1  so we have a match, but what is the four-digit number that the plug-in 
found? How do we obtain the portion of the string that was matched?  
 
There are two ways to achieve that, and both require that we use the match service as if 
it were a replacement service:  
 
- First, an obvious workaround: we can (group) the whole pattern and get the match 
with the first back reference:  

rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "([0-9]{4})"  
rx_replace = "\1"  
void_var = plugin ("regex", "match")  
 
rx_return =>  1   
rx_output => 2002  

 
OK, now we found the four-digit number matched by "([0-9]{4})"! It's "2002"!  
 
- the second way is not a workaround, but an actual mechanism provided by the 
REGEX plug-in: grouping or not the whole pattern, the match can always be obtained 
with the zeroth back reference:  

rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "[0-9]{4}"  
rx_replace = "\0"  
void_var = plugin ("regex", "match")  
 
rx_return =>  1   
rx_output => 2002  

 
Not very intuitive, but no rocket science either. Mystery solved. That's what 
documentation is for!  
 
Note that although we use the match service as if it were a replacement service, no 
actual replacement has taken place yet. We use the rx_replace variable, but we're 
not changing the original string at all, we're in fact just replacing whatever we place in 
rx_replace with the matched portion, thus extracting the matched portion. Replacing 
involves changing part or all of the original string and getting back the entire string 
with the modifications. The match service will not output anything besides the 
matched portion only, its output never includes the rest of the string if it does not 
match.  

 

 
 
 

But, wait! There is more! We still haven't tried the matchg service. What if we want to 
find all occurrences of a pattern that may occur more than once? Let's see:  

Plain English: take the phrase "Today is 24/09/2002, 03:28", check if it contains the pattern 
"[0-9]{2}", i.e. a sequence of exactly two digits, and obtain the matched portion so as to verify 



Windows PowerPro Page 194 Version 3.7 

exactly what two-digit number was found.  
 
rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "[0-9]{2}"  
rx_replace = "\0"  
void_var = plugin ("regex", "matchg")  
 
rx_return =>  1   
rx_output => 240920020328  

 

The REGEX plug-in finds 24, 09, 20, 02, 03 and 28 and displays them all in a sequence, 
in the order they are found. If you want to separate the matches, just add a space to the 
replacement string:  

rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "[0-9]{2}"  
rx_replace = "\0 "  
void_var = plugin ("regex", "matchg")  
 
rx_return =>  1   
rx_output => 24 09 20 02 03 28  

 

If you want to unload the plug-in at the end of the script, here is how it's done:  

void_var = plugin ("regex", "*")  

 

 
 

 
REPLACE/REPLACEG:  

We use the replace and replace global services to check whether some text contains 
any sequence of characters, like words, phrases, numbers or symbols, and replace the 
matched pattern with some other text. You may also want to keep two things in mind 
when using the replacement services:  
 
 

  

1. The replace and replace global services also return the match status 
return codes. So they also have some match functionality.  

2. The replace services actually replace text, i.e. they actually modify the 
original string and output a new string.  

  

The first point means that we can also use the replace services to test matches. Usually, 
the replace services are used when some match is already expected and intended to be 
replaced right away. But it is possible to use replace operations to test a match and, if it 
is found, replace it with something else, all in a single operation.  
 
The second point is related to something that has been said before in this document and 



Windows PowerPro Page 195 Version 3.7 

is repeated now:  
"Note that although we use the match service as if it were a replacement service, no 
actual replacement has taken place yet. We use the rx_replace variable, but we're not 
changing the original string at all. Replacing involves changing part or all of the 
original string and getting back the entire string with the modifications. The match 
service will not output anything besides the matched portion only, its output never 
includes the rest of the string if it does not match."  
 
Contrasting with the behavior described above, the replace and replace global services 
will take everything: they will take the whole string, replace the matched portion with 
whatever is provided in rx_replace and output not just the matches, but rather a 
combination of not matched and matched/replaced text. While the match service 
required that we use the rx_replace variable just to extract matches, this time the 
rx_replace variable actually does the job of replacing something and modifying the 
original string.  
 
OK, let's see some examples:  

Plain English: take the phrase "Today is 24/09/2002, 03:28", check if it contains the pattern 
"[0-9]{4}", i.e. a sequence of exactly four digits^. If it is found, we're going to replace it with 
"XXXX".  
 
rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "[0-9]{4}"  
rx_replace = "XXXX"  
void_var = plugin ("regex", "replace")  
 
rx_return =>  1   
rx_output => Today is 24/09/XXXX, 03:28  

 
 
"2002" is the only sequence of four digits in rx_string, so the year 2002 is replaced 
with "XXXX".  
 
Let's see another example:  

Plain English: take the phrase "Today is 24/09/2002, 03:28", check if it contains the pattern 
"[0-9]{2}", i.e. a sequence of exactly two digits. If it is found, we're going to replace it with 
"XX".  
 
rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "[0-9]{2}"  
rx_replace = "XX"  
void_var = plugin ("regex", "replace")  
 
rx_return =>  1   
rx_output => Today is XX/09/2002, 03:28  

 
 
There are several occurrences of two-digit sequences: 24, 09, 20, 02, 03 and 28. But 24 
is the first one to be found, so that's the one replaced with "XX". Because we used the 
replace service. If we want to replace ALL two-digit sequences with "XX", we use the 
replace global service:  

Plain English: take the phrase "Today is 24/09/2002, 03:28", check if it contains the pattern 
"[0-9]{2}", i.e. a sequence of exactly two digits. If it is found, we're going to replace it with 
"XX".  



Windows PowerPro Page 196 Version 3.7 

 
rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "[0-9]{2}"  
rx_replace = "XX"  
void_var = plugin ("regex", "replaceg")  
 
rx_return =>  1   
rx_output => Today is XX/XX/XXXX, XX:XX  

 
 
OK, just one more example:  

Plain English: take the phrase "Today is 24/09/2002, 03:28", check if it contains the pattern 
"[A-Za-z ]+", i.e. a sequence of characters with undefined length which may include upper and 
lower case letters and spaces. If it is found, we're going to replace it with "", i.e. nothing.  
 
rx_string = "Today is 24/09/2002, 03:28"  
rx_pattern = "[A-Za-z ]+"  
rx_replace = ""  
void_var = plugin ("regex", "replaceg")  
 
rx_return =>  1   
rx_output => 24/09/2002, 03:28  

 
 
So, not the entire string matches the pattern. Only part of it, "Today is ". We told the 
REGEX plug-in to replace it with nothing, so "Today is " is just deleted. The rest is 
kept.  
 
 
 
And this is it. Go ahead and do your own experiments! Use the script below to run any 
tests you feel like. The script is ready to be used. Just copy it, paste it in a text file 
(preferably with the ".powerpro" extension) and run it. The parts highlighted with a 
white background can and should be changed to suit your preferences.  
 
 

REGEX PLUG-IN TEST SCRIPT  

;rx_string = the string on which you want to run the expression 
;rx_pattern = the regular expression 
;rx_replace = replacement string 
;myServices: match, matchg, replace, replaceg 
 
rx_string = "Today is 24/09/2002 03:28" 
rx_pattern = "[0-9]+" 
rx_replace = "XX" 
myService = "replace" 
;# ---------------------------------------------------------------- 
x0 = plugin ("regex", myService) 
;# ---------------------------------------------------------------- 
If (rx_return == 0) do 
       myMsgPopup = rx_return ++ " - Full match!" 
       ElseIf (rx_return == 1) 
       myMsgPopup = rx_return ++ " - Partial_match" 
       ElseIf (rx_return == 2) 
       myMsgPopup = rx_return ++ " - No_match" 



Windows PowerPro Page 197 Version 3.7 

       ElseIf (rx_return == 3) 
       myMsgPopup = rx_return ++ " - Output_too_long" 
       ElseIf (rx_return == 8) 
       myMsgPopup = rx_return ++ " - Invalid_regex. Pay attention!!!!" 
       ElseIf (rx_return == 9) 
       myMsgPopup = rx_return ++ " - No_input." 
       Else 
       myMsgPopup = rx_return ++ " - Yikes! Weird return code!" 
       EndIf 
;# ---------------------------------------------------------------- 
Debug RETURN CODE: $(myMsgPopup), OUTPUT: $(rx_output) 
;# ---------------------------------------------------------------- 
 
;THE NEXT LINES ARE OPTIONAL. USE THEM IF YOU WANT  
;A LOG FILE CALLED "DEBUG-REGEX.TXT" ON YOUR DESKTOP 
myLogFile = "c:\windows\desktop\debug-regex.txt" 
*Exec ToFile $(myLogFile) Testing myService: $(myService) 
*Exec ToFile $(myLogFile) 
*Exec ToFile $(myLogFile) rx_string = $(rx_string) 
*Exec ToFile $(myLogFile) rx_pattern = $(rx_pattern), rx_replace = $(rx_replace) 
*Exec ToFile $(myLogFile) rx_return = $(rx_return), rx_output = $(rx_output) 
*Exec ToFile $(myLogFile) 
*Exec ToFile $(myLogFile) ==================================== 
*Exec ToFile $(myLogFile) 

 
 
 

•  Getting started with Regular Expressions:  
 
PCRE man page in txt format:  
http://www.pcre.org/man.txt  
PCRE man page in HTML format:  
http://www.fifi.org/cgi-bin/man2html?pcre+7  
PCRE introduction page at PHP.net:  
http://www.php.net/manual/en/pcre.pattern.syntax.php  
Perl Regular Expressions (not strictly PCRE) at Perldoc.com:  
http://www.perldoc.com/perl5.6/pod/perlre.html  
 
Visual Regexp is not PCRE-compatible, but it's a terrific tool for any user of Regular Expressions, 
especially newbies. It supports ARE (Advanced Regular Expressions), which are more sophisticated 
than plain POSIX regex but less sophisticated than PCRE:  
http://laurent.riesterer.free.fr/regexp/  
 

•  Good regex, bad regex:  
 
Many applications support Regular Expressions, but that's not always good. Good Regular 
Expressions are those that comply with common, widely-accepted standards. Applications that 
support good regex include:  
 
- sed, super-sed, vi, Vim, Emacs, Perl, PHP, Tcl, Python, Ruby, VBS, SciTE, Crimson-
editor, Visual Regexp.  
 
The REGEX plug-in is fully compliant with POSIX "Extended" Regular Expressions and PCRE. If you 
can use Regular Expressions in the above applications successfully, you probably know actual 
Regular Expressions and should have no problem with RE syntax while using the PowerPro REGEX 
plug-in.  

http://www.pcre.org/man.txt
http://www.fifi.org/cgi-bin/man2html?pcre+7
http://www.php.net/manual/en/pcre.pattern.syntax.php
http://www.perldoc.com/perl5.6/pod/perlre.html
http://laurent.riesterer.free.fr/regexp/


Windows PowerPro Page 198 Version 3.7 

 
Bad Regular Expressions are those that do not comply with common, widely-accepted standards. 
Applications that use bad Regular Expressions typically have an incorrect and/or incomplete regex 
implementation and try to impose an arbitrary system, forcing their users to learn otherwise 
idiosyncratic syntax that has no use whatsoever in any other program or programming language. 
Applications that make use of bad regex include:  
 
- MS Word 2000 or earlier, UltraEdit, Proxomitron.  
 
The REGEX plug-in is fully compliant with POSIX "Extended" Regular Expressions and PCRE only. 
If you can only use successfully whatever the above applications call "Regular Expressions", you 
probably know little or nothing about Regular Expressions and will have to learn the real thing 
before you can use the PowerPro REGEX plug-in.  
 
Of course, neither of the two lists above is comprehensive.  
 
 
 
 
 
 



Windows PowerPro Page 199 Version 3.7 

 

 

 

POWERPRO REGEX PLUG-IN  
 
 

Designed by: Julien Pierrehumbert and Luciano Espirito Santo  
 
 

Coded by: Julien Pierrehumbert  
 
 

Documentation by: Luciano Espirito Santo  
 
 

Contacting the authors:  
If you don't have our email addresses, use the PowerPro mailing list.  

 
 

Known issues:  
Using lookbacks (a PCRE-specific feature) with the global services might lead to unexpected 

results.  
 
 

PowerPro written by: Bruce Switzer  
 
 

Regular Expressions GNU library by: Philip Hazel  
 
 

Legalese:  
This plug-in is distributed in the hope that it will be useful, but without any warranty; without even 
the implied warranty of merchantability or fitness for a particular purpose. Do whatever you want 

with the program and the source, we decline any responsibility.  
 

Regular expression support is provided by the PCRE library package, which is open source 
software, written by Philip Hazel, and copyright by the University of Cambridge, England.  

The original software may be found at ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/  
The PCRE Regular Expression library has its own licencing terms and conditions. Please get 

informed about them if you intend to use it.  
 
 
 

  
Special thanks to:  

Bruce Switzer  

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

	Title Page
	Index
	Overview
	Table of Contents
	PowerPro License and Warranty
	Configuring PowerPro
	Setup Dialog
	Automatically Moving the Mouse Cursor to a Dialog Button
	Minimizing a Window to the Tray
	Changing Explorer List and View Settings
	Advanced configuration options
	Exporting and Importing Configurations Using Text Files
	Automatically Hiding Windows

	GUI Control Configuration Options
	Caps Lock, Num Lock,  and Scroll Lock
	Scrolling with Mouse Movements
	Manual Scrolling with Mouse
	Automatic Scrolling with the Mouse
	Automatically Pressing Buttons when Mouse is Stopped over Them
	See Mouse Cursor Position and Window Information

	Command Lists Dialog
	Configuring a Command List Item
	Special Labels for Buttons
	Date and Time Format
	Resource Usage Displays
	Other Displays
	Command List Properties
	Tool Tip Setup
	Working with Invisible Bars
	Command List Setup Dialog
	Active Window Switching with Buttons
	Working with Tray Icons
	Creating Bar Buttons from the Files and Subfolders of a Folder
	Tray Icon Buttons
	Omitting Windows and Words from Active Window Lists
	Hiding Windows
	Automatically Running Commands when Windows Open
	Adding Entries to the Explorer Right Click Context Menu
	Purpose
	Configuration
	Displaying Different Items for Different Files
	Example


	Hot Keys and Mouse Action Commands
	Hot Key and Mouse Action Setup
	Entering Hot Key/Mouse Action Information
	Hot Key/Mouse Action Explanations
	Window-Specific Hot Keys

	Scheduler
	Entering Information for A Scheduled Command
	Scheduler Setup
	Running Programs After the System is Idle for a Specified Time
	Alarm Log

	Timers
	Setting Timers and Associated Commands
	Setting Timer Value and State
	Timer Logs

	Media Dialog
	PowerPro Sounds

	Command Entry Controls
	Running Multiple Commands

	PowerPro Built-In Commands
	Bars and the *Bar Command
	Screen Edge Positions
	Showing Other Bars when you Click a Main Bar
	Using Subbars to Display Different Parts of Bars
	The Section/Subbar Approach to Configuration
	Drag and Drop onto the PowerPro Button Bar
	Using the keyboard to access the button bar
	Adding a Button
	Changing a Button
	Deleting a Button
	Moving Bar
	Positioning the Bar
	Creating an Autohide Bar
	Creating a New Bar
	Removing a Bar
	Bar Look
	Positioning PowerPro Bars in or beside the Foreground Window

	Clipboard Manipulation, Tracking and Copying
	Clipboard History Tracking
	Clip Filters

	Desktop Command
	Saving and Restoring Desktop Icon Positions
	Changing Screen Display Resolution

	Using *Exec
	Suspending Alarms
	Tiny Type and Run Dialog
	Logging Keystrokes
	Date/Calendar Calculations and Display
	Prompting for Yes/No Information
	Sound Volume
	CD Functions:
	Writing Entries to a File

	PowerPro *File Commands
	Working with a Randomly Selected File

	Sending Keys to Other Windows
	Specifying the Window to Receive the Keys
	Specifying the Keys to be Sent using *Keys
	Examples of Keys Commands
	Sending Keys to Programs When They Are Started
	Selecting some Keys to be Sent from a Menu
	Creating Menus or Bars of Favorite Folders using *Keys

	Formatting Menus and Bars with *Format
	Changing the Look of an Item with *Format Item

	Sending a Sequence of Mouse Clicks and Moves
	Displaying Menus with *Menu
	*Menu Folder
	Format of *Menu Folder
	Special Folders for *Menu Folder
	Entering Format Information for Folder Contents Command
	Using *Folder Contents Menu with a Large Folder Tree
	Window-Specific Bar and Menu Contents
	Working with Explorer Windows

	Displaying a Message with *Message
	Accessing the Screen Saver with *ScreenSaver
	Shutdown Windows or PowerPro
	Command Scripts
	Keyword Values
	MessageBox
	InputDialog
	FormatDate and FormatTime


	Help on Expressions
	Sample Script
	Running a Script from a File

	Working with Tray Icons from Other Programs
	Training PowerPro to Recognize Tray Icons from Other Programs

	Changing the Wallpaper with *Wallpaper
	Virtual Desktops
	Explanation of Virtual Desktop Menu
	Virtual Desktop Setup
	Initializing Desktops Using the Configuration Dialog

	Wait Command
	Manipulating Windows of Running Programs
	Specifying the Action for *Window Command
	Specifying the WindowID for the*Window Command
	Window Handles

	Keyboard Macros
	Favorite Folders and File/Open Save Dialogs
	Windows PowerPro Command Line
	Information for Stiletto Users
	Purchasing PowerPro
	Frequently Asked Questions (with Answers)
	Power and Flexibility of PowerPro
	Demonstrations and Samples
	Demonstration of Menus and Context Menus
	Demonstration of Subbars and Manually Shown Bars
	Demonstration of *Window Commands
	Demonstration of Sending Keys with *Keys
	Demonstration of Hot Keys and Mouse Actions
	Demonstration of *Menu Folder
	Demonstration of Keyboard Macros
	Demonstration of Running Commands when a Window First Opens
	Virtual Desktop Sample

	Notes
	Skins
	Using Skins
	Creating Skins

	Sharing PowerPro Configurations
	Contact for Questions or Support
	Plugins
	General Information
	How to Program Plugins
	Sending Commands to PowerPro

	Plugin Memory
	AU PLUGIN  (Version 2002 12 22)
	DATE PLUGIN (Version 2002 10 29)
	EVENT PLUGIN  (Version 2003 01 01)
	FILE PLUGIN  (Version 2003 01 19)
	FLOAT PLUGIN  (Version 2002 10 28)
	Sample PLUGIN  (Version 2002 12 22)
	VEC PLUGIN  (Version 2002 12 28)
	WIN PLUGIN  (Version 2002 12 22)
	RegEx Plugin (12/26/02 Version)




