
vars plugin for PowerPro: version .87: 7 May 2009
A POWERPRO PLUGIN TO SAVE SCRIPT VARIABLES

Alan Campbell

No warranty of any kind, express or implied, is included with this software;
use at your own risk Responsibility for damages (if any) to anyone resulting
from the use of this software rests entirely with the user.

1.0 Overview
This PowerPro plugin allows script variables to be saved to an ini file, and recovered
from it, allowing variable values to persist between invocations of a script.

You won’t find this plugin makes much sense if you're not a reasonably advanced
script writer. You must for instance understand what it means to declare a variable
global, static and local, and you might want to know a bit about maps and vectors.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 2 of 32

1.1 This Document

There are three versions of this document, with the same content. There's an RTF
file, which looks nice in Word but is something like four meg in size; and there's a
compiled help (CHM) document, which is much smaller if somewhat uglier; and
there's a pdf, with bookmarks for each section heading.

In my experiments I've found the RTF file doesn't display correctly in anything but
Word (not Keynote, even Wordpad: you've think Microsoft could at least get their rtf
engines consistent). So if you don’t have Word, better use the chm file.

All documents have extensive hyperlinks. The table of contents at the front of each
document is a set of them.

The chm file has no index.

1.2 What’s New In This Version

• fixed a bug meaning ini config file not found on machines running non-
English version of windows

• added varsPluginFunctions.txt to be used as a file menu, perhaps merged
with pprofunctions.txt.

• added a pdf version of documentation

1.3 Terminology

In order to describe how the vars plugin works, I need some vocabulary that hasn’t
been provided in the PowerPro documentation.

Variables can (and should) be declared storage class (local, static, or global) (see
the PowerPro help section "Programming scripts with if, jump, variables, flags"). I'll
refer to these as the possible storage classes a variable may belong to.

Variables are normally a way of storing a single value. I'll call these simple variable
scalars.

Variables may also name maps or vectors (created and manipulated using services
of the map and vec plugins). I'll call such variables collections.

A single script file may contain many procedures, each starting with a @label and
ending with a quit statement. I'll call each of those executable sections a
procedure.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 3 of 32

1.4 Uses

• You could use this plugin to save variables that need to persist between runs of
PowerPro. I use it to retrieve a set of global variables (often treated as read-
only constants) in my startup script.

• If you had variables that needed to be used in several scripts, you could use
the vars plugin to restore variables at the beginning of each script and save
them when they finished. You could achieve the same result a number of other
ways:

 Use global variables. That might be undesirable, as the variables would
then be visible to all scripts, not just the few that needed them.

 Use several labelled subscripts beginning with a @label and ending with
quit, in the same file, and declare the shared variables static. Static
variables appear to hold their values for any subscript within a file.

2.0 Requirements

PowerPro version 3.4 or later. Test scripts require at least 3.8.15. Edit them to get
rid of ?c…c syntax to use with previous versions. The scripts work in standard
configuration.

Those of you who are tetchy about MFC will be happy to know that, unlike the
registry plugins, vars.dll doesn’t require MFC support (e.g. MFC42.DLL).

The test script uses the ini plugin.

Tested on W2000 sp2 and NT4 sp3.

2.1 Related plugins

Since this plugin saves variables in ini files, you might want to do clever things
directly to the variable-saving ini files with the ini plugin.

This plugin uses the map and vec plugins to manipulate..guess what…maps and
vectors.

2.2 Reporting Bugs, Requesting Enhancements

This plugin is complicated. I have by no means tested every possible path through
the code, so bugs are likely.

If you hit any problems with this plugin (or any of my plugins, for that matter), it'd be
helpful if you reported them via the PowerPro forum (http://groups.yahoo.com/group/
power-pro/) in a message with a clear subject line (maybe: "VARS PLUGIN:
apparent error in:…."). I don’t read everything in the forum, but I will see anything

http://groups.yahoo.com/group/power-pro/
http://groups.yahoo.com/group/power-pro/

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 4 of 32

flagged with an obvious header. Please include a copy of the script causing
problems, and state which version of PowerPro and of the vars plugin you're using.

3.0 File list

plugins\vars.dll
docs\varsPluginReadme.rtf
docs\varsPluginReadme.chm
docs\varsPluginFunctions.txt
scripts\varsPluginTestScript.powerpro
scripts\allProcs.ini
scripts\allProcsGlobalsPerProc.ini
scripts\varsPluginTestScript.ini
scripts\allProcsStaticsPerFile.ini
scripts\varsPluginTestScriptOutputProvided.log
scripts\vars.ini

4.0 Installation

Copy vars.dll from varsPluginX.XX.zip archive into your PowerPro directory, or into
its Plugins subfolder. If you want to provide an initial configuration of the plugin (see
Section 9.1), edit vars.ini and put it in the folder pointed to by pprofolder; or add its
edited contents to plugins.ini in the same folder.

The .rtf documentation, .powerpro script and .log sample output can go wherever
you want. If you want the test script varsPluginTestScript.powerpro (which
demonstrates vars.save and vars.restore services) to work correctly, create a vars
subfolder of <pprofolder>\scripts and put allProcs.ini, allProcsGlobalsPerProc.ini,
varsPluginTestScript.ini, and allProcsStaticsPerFile.ini in it.

varsPluginFunctions.txt can be appended to pprofunctions.txt supplied in the
PowerPro distro (or included in it, using

include <path to>\comPluginFunctions.txt)

It can then be accessed either as part of pprofunctions.txt or on its own as a file
menu (e.g. using a hot key associated with

*keys {filemenu <path to>\pproFunctions.txt})

5.0 Uninstall

Remove all files listed in the above section (“3.0 File list”) from wherever they went.

6.0 Acknowledgements

Idea from SGP, who tested intermediate versions.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 5 of 32

7.0 Testing

The test script uses the ini plugin.

If you want to use the enclosed script, “varsPluginTestScript.powerpro” to exercise
the plugin:

Then, either:

• Put varsPluginTestScript.powerpro in your <PowerPro
configuration>\scripts directory

• Run varsPluginTestScript.powerpro with a command (menu item?) in
PowerPro like

*Script RunFile varsPluginTestScript.powerpro or
.varsPluginTestScript

Or:

• Put varsPluginTestScript.powerpro anywhere and double click on it (as
long as PowerPro is already running). This didn’t work on my machine
until I manually set up an association with .powerpro, but if your PowerPro
installation went correctly it should work for you.

varsPluginTestScript.powerpro will output both to the Debug window and a log file.
By default that file is “varsPluginTestOutput.log” in same directory as your pcf file.
You can edit the script to point it another path/file if you wish: it’s the first line of code
in the script, and assigns a path/file name to the variable vars_test_logfile. If you
assign the null string to vars_test_logfile, no log file will be created.

varsPluginTestScript.powerpro overwrites values in the [varsConfig] section of
vars.ini if it exists, or plugins.ini settings if it doesn't. It will however attempt to
restore whatever values it finds there (if any). If neither vars.ini or plugins.ini exist, it
will create plugins.ini..

The varsPluginTestScript.powerpro script doesn’t use the evaluate-expression
operator "&" so is not dependent on your choice for it. It uses the ?c…c syntax to
avoid problems with your declared escape character, so you should have no
problems whether that's ' or \.

There are further comments on how the varsPluginTestScript.powerpro script works
embedded in the script itself.

The log file generated by varsPluginTestScript.powerpro can be compared with
“varsPluginTestScriptOutputProvided.log” that comes with the distribution.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 6 of 32

8.0 List of Services And General Notes on Usage
Ensure vars.dll is in your PowerPro installation directory, or in the plugins subfolder
thereof.

There are numerous services in this plugin. They are

service description section
save_var save one script variable to ini file 10.1
restore_var recover one variable from ini file 10.2
save save script variables to ini file 10.3
restore recover variables from ini file 10.4
chars_to_hex_encode specify which characters should be

saved in \xNN format 10.5

error_dialog_on
error_dialog_off

turn PowerPro script error dialog on
and off 10.6

config set location of configuration ini file 10.7
version returns the plugin version number as

four digit number, last two to be taken
as right of decimal.

unload remove plugin from memory

restore_var, restore, save_var and save always declare and use the variable
_t2mpn0g.

These are described below, in section 10 and its subsections.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 7 of 32

9.0 Writing scripts using the vars plugin

Call the appropriate plugin service as follows:

retval = vars.service(arguments if any)

Results, if any, are generally available as the returned value from the above
expression, though there are alternatives.

After you are finished using the vars plugin in your script, you can if you wish unload
it with

vars.unload

It's probably best done if you do not foresee the plugin being used again for a while.

All services return "OK" if all goes well, or a string beginning "ERROR: " if not.

There are services which affect the behaviour of the vars plugin (see sections 10.5 –
10.6). You can also customise the behaviour of plugin services by providing a
configuration ini file (see section 9.1).

If you do an *Exec ChangeConfiguration, and the new and old pcf files are in
different folders, you should unload this plugin before using any of its services with
the new configuration. (only necessary if you use relative paths to specify the
location of ini files).

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 8 of 32

9.1 The Configuration ini File

On the first call to any vars service, the plugin checks for a file called vars.ini in the
folder pointed to by the PowerPro variable pprofolder (usually the folder in which the
currently active pcf file is found). It then looks for a [varsConfig] section in that ini
file. If that's not found, it looks for the same section in the file plugins.ini in the same
folder. If either are found, it looks for the following values in the section:

* Only the first non-whitespace character of the key's value is checked, no matter
how many there are. So values "yes", "no", "true" or "false" will work. As usual the
ini value is case-insensitive, so "Y" and "FALSE" are also valid.

† Only the first non-whitespace character of the key's value is checked, so "status",
"data" and "none" will work.

If no vars.ini or plugins.ini files are found with a [varsConfig] section, the vars plugin
will initially just use the compiled-in, default values (specified in the third column
above) to configure itself.

If an ini file with a [varsConfig] section is processed, and there's a possible value
that could be in ini but isn't, the vars plugin reverts to the default value for that value.

Once an ini file with a [varsConfig] section is processed, its values stay in force until
the vars plugin unloaded or the config service is run.

If the first service called is one which itself changes the configuration (e.g.
error_dialog_on), the configuration ini file will be found and evaluated before the
service is applied.

key possible
values

default
value

can also change
using service meaning

staticsSavedOncePerScript as above 1 none see Sec. 11.1

reqDeclarationBeforeRestore as above 1 restore
second param see Sec. 10.2.1

varsBackupLocation path to
file/folder scripts/vars none see Sec 11.1

varsBackupGlobalsLocation file or null null string none see Sec. 11.1

allowDupVariableDeclares
0 1
y n

 t f *
1 none

allow same variable
with different storage
classes. See below.

charsToHexEncode any +1-1F chars_to_hex_enco
de

determines which
characters are saved
in \xNN format See
Section 10.5 for
details.

raiseErrors
0 1
y n

 t f *
1 error_dialog_on

error_dialog_off

determines if errors in
syntax format, service
arguments etc cause
powerpro to raise the
script error dialog.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 9 of 32

If you want to change your initial configuration, you can use the ini plugin to do it.
E.g.:

ini.set(pprofolder ++ "plugins.ini", "varsConfig",
staticsSavedOncePerScript", "no")

After making your changes, either:

• unload the vars plugin. The next time you use one of its services, the new
configuration will kick in. Or

• run vars.config(<path to configuration ini file>).

If you do an *Exec ChangeConfiguration; and if the new and old pcf files are in
different folders; and if there's a vars.ini or plugins.ini file in the new pprofolder, the
configuration it specifies won’t take effect until you take one of the steps above..

allowDupVariableDeclares determines if variables restored or saved (and
therefore named in the ini file) are allowed to have duplicate declarations, i.e.
declared as different storage classes. If false, the following situations will generate
error messages:

variable in
ini file

not allowed to also have a
declaration as

globals static

static global

local static, global

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 10 of 32

10.0 The Services

Variables are saved to an ini file; either

• the one named in the last argument of the service call (which, if not an
absolute path, is taken to be relative to the folder specified in pprofolder);

• or, if that argument is absent, the ini file determined by values in the
vars.ini/plugins.ini configuration file: see below (Section 11.1: “Where
Variables Are Saved to and Restored from: the ini Files”)

The easiest services to use are save_var and restore_var. I suggest you try them
first, and try them using only the required parameter (the name of a variable to save
or restore).

For all services, if you want to control exactly where variables are stored, and how
globals, statics and collections are stored, you need to read Section 11 and its
subsections carefully.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 11 of 32

10.0.1 The <tag> Argument

All services that save and restore variables have an optional <tag> argument. If it’s
not the final argument in a service's argument list, and you wish not to specify it, use
the null string: a null <tag> argument means no <tag> argument.

Variables are saved separately for each combination of <tag> and script file. The
plugin knows what script file you're invoking the service from: the <tag> is an
arbitrary string you provide as an argument. The <tag> argument may be necessary
because you might wish to:

• save a distinct set of variables for each section of code in a script file callable
via a @label.

I can’t within my plugin determine the name, if any, of the @label by which a
script was invoked. Hence <tag>. A good convention might be to always use
the @label as the <tag>. Like this:

@myLabel

local myLocal
static st_myStatic

vars.restore(“myLabel”)
.
.
vars.save(“myLabel”)
quit

• save a distinct set of static variables for different states of a script file. Each
state would be represented by a different <tag>: all procedures in the file
would use the values of the static variables saved and restored under various
<tag>s, and could therefore be regarded as “in a different state”. This will
only work if the key staticsSavedOncePerScript is 0, “n” or “no” in your
configuration ini file.

If a script file has no labelled subsections, and if you have no need to save separate
sets of scalar variable values, you might choose to invoke vars.save and
vars.restore without a <tag> argument (or a null string in its place).

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 12 of 32

Details of specific services follow.

10.1 save_var
vars.save_var(<variable_name> [, <tag> [, <ini_file>]])

vars.save_var will save one variable in a script to an ini file. You can restore the
saved variable using either vars.restore (Section 10.4) or vars.restore_var (see next
section).

The <variable_name> parameter is not the variable itself; it's the name of the
variable. So if you want to save a variable iX, call will be, at least

vars.save_var("iX")

not

vars.save_var(iX)

If an explicit <ini_file> isn’t specified in the service call, the ini file determined
according to the rules specified above in Section 11.1 (“Where Variables Are Saved
to and Restored from: the ini Files”) will be used.

If the variable <variable_name> does not exist at the point in a script at which
vars.save_var(<variable_name>…) is invoked, the service will trigger an error
message dialog or return an error message (see Section 10.6 to find out which).

See Section 10.0.1 regarding the <tag> parameter.

Variables containing floating point numbers will appear as gibberish in their ini file
representation, but it’s meaningful gibberish, which will get turned back into the
correct number when you restore.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 13 of 32

10.2 restore_var
vars.restore_var(<variable_name> [,<tag> [, <recreate_variable>

 [, <ini_file>]]])

restore_var will restore one variable to a script, retrieved from an ini file.

<variable_name> is not the variable itself; it's the name of the variable: e.g. if you
want to restore a variable iX, the service call will be, at least:

vars.restore_var("iX")

not

vars.restore_var(iX)

The variables is recovered from an ini file; either

• the one named in the fourth argument of the service call (which, if not an
absolute path, is taken to be relative to the folder specified in pprofolder);

• or, if that argument is absent, the ini file determined by values in the
vars.ini/plugins.ini configuration file: See Section 11.1: “Where Variables Are
Saved to and Restored from: the ini Files”.

If the appropriate ini section/value(s) that defines the value of the variable
<variable_name> doesn’t exist at the point in a script at which
vars.restore_var(<variable_name>…) is invoked, the service will trigger an error
message dialog or return an error message (see Section 10.6 to find out which).

See Section 10.0.1 regarding the <tag> parameter.

If you use a <tag>, it must match one you used when you called vars.save or
vars.save_var.

10.2.1 The <recreate_variable> Parameter

The key reqDeclarationBeforeRestore in the vars.ini/plugins.ini configuration file
(which defaults to 1 if not defined) and the second argument of the vars.restore_var
service (<recreate_variable>s: defaults to 0 if not present) determine if variables
must be declared (and collections created) before they are restored. vars will
require variables be declared before restored if:

• reqDeclarationBeforeRestore is 1 and there is no second argument to
vars.restore.

• there is a non-zero second argument to vars.restore, regardless of the value
of reqDeclarationBeforeRestore.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 14 of 32

Personally I think it might always be good practice to explicitly declare variables and
create collections. Otherwise readers of your script (including you, in a year’s time)
will have to refer to the variable-storing ini file to see what variable does what.

If you cause the vars.restore service to declare variables, it will declare each to be of
the storage class (as defined in the ini file) and create collections using the
parameters stored there (see Section 11.5 “Storing Collections”, below).

10.2.2 Restoring a Collection: Some Notes

When a collection is restored, I've assumed you want the vec or map to have all but
only the values stored in the ini file. A static and global collection may have
elements added by other scripts and procedures. So I have to clear any collection
before restoring it. In Power-pro versions earlier than 4.1.03 the only way to do that
is to destroy it and then create it again; if that's done the create parameters defined
for each collection's value in the ini file (see Section 11.5 "Storing Collections"
below) will be used. (In Power-pro versions 4.1.03 or later I can use the deleteall
service to clear out a map or vec).

I'll assume you will not populate a local collection before you invoke restore, so a
local collection will not be wiped before being restored.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 15 of 32

10.3 save
vars.save()
vars.save([<tag> [, <create_sections> [, <add_statics> [, <add_globals> [,
<ini_file>]]]]])

vars.save will save variables in a script to an ini file. You can restore the saved
variables using vars.restore (see next section).

Unlike vars.save_var, vars.save will save all the variables with entries in an ini file
– either

• the one named in the fifth argument of the service call (which, if not an
absolute path, is taken to be relative to the folder specified in pprofolder);

• or, if that argument is absent, the ini file determined by values in the
vars.ini/plugins.ini configuration file: See Section 11.1: “Where Variables Are
Saved to and Restored from: the ini Files”.

See the Section 10.0.1 regarding the <tag> parameter.

10.3.1 Setting up an ini File: the Parameters <create_sections>, <add_statics>,
<add_globals>

The second argument of vars.save (<create_sections>) if omitted is assumed zero.
If non-zero, e.g.

vars.save("myProc", 1)
vars.save("", 1)

vars.save will generate the standard section names for scalars of each storage
class and for collections, as dictated by the rules set by the configuration ini file keys
varsBackupLocation, varsBackupGlobalsLocation and
staticsSavedOncePerScript (see below, this section and one following).

You can then manually add the names of all the variable you want saved, with any
or no value e.g.

myVar1=
myVar2=dummy

Or you can call vars.save with non-zero third (<add_statics>) and/or fourth
(<add_globals>) arguments. Their permissible values are:

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 16 of 32

The plugin cannot detect declared local variables: you have to add them manually.

In my experience an <add_statics> of 1 (adding all statics) and an <add_globals> is
2 (use a picklist) is quite a good combination, e.g.

vars.save("myLabelledProc", 1, 1, 2)
vars.save("", 1, 1, 2)

YMMV.

Note that when variable names are added to an ini file they will always be in lower
case (an artefact of how PowerPro records variable names): you may wish to edit
variable name case in the ini file for clarity. Also note that if the plugin finds a static
or global variable already entered in an ini file, it will not overwrite the value
assigned to the variable.

If you only want to save a few variables, you might find that a few calls to
vars.save_var(var_name) (see Section 10.1) might be the simplest thing option.

If argument is then

omitted or 0 no variables of the relevant storage class are added.

1 all variables of the relevant storage class (including scalars,
maps and vecs), defined at the point at which vars.save is
called, will be added to the ini file

2 a PowerPro picklist will popup repeatedly offering a list of

• all variables of the relevant storage class
(including scalars, maps and vecs),

• defined at the point vars.save has been called,

• that have not yet been added to the ini file.

To select a variable, click on it and click Ok, hit <enter>, or
double click. The variable selected will be added to the ini file.
Clicking Ok or hitting <enter> with no variable selected will
select the first item on the list. To stop picking variable of the
relevant storage class, click cancel or hit <esc>.

3 (Only legal if you have PowerPro 4.1.04 or later): As 2, but you
can select multiple variables in the list by holding down <ctrl> or
<shift> keys. Be careful of clicking Ok, or hitting <enter> with no
variable selected: that will select all the variables in the list.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 17 of 32

10.4 restore
vars.restore([<tag> [, <recreate_variable>s [, <ini_file>]]])

vars.restore reloads variables that were saved with vars.save.

You can’t call vars.restore if you haven’t previously called first created the ini file
that stores variable values.

Unlike vars.restore_var, vars.restore will recover all the variables with entries in an
ini file – either

• the one named in the third argument of the service call (which, if not an
absolute path, is taken to be relative to the folder specified in pprofolder);

• or, if that argument is absent, the ini file determined by values in the
vars.ini/plugins.ini configuration file: See Section 11.1: “Where Variables Are
Saved to and Restored from: the ini Files”.

Only variables named in the relevant sections of the ini file will be restored.

See Section 10.0.1 regarding the <tag> parameter.

If you use a <tag>, it must match one you used when you called vars.save or
vars.save_var.

See Section 10.2.1 regarding the <recreate_variable> parameter.

See Section 10.2.2 ("Restoring a Collection…") if you want to do that thing..

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 18 of 32

10.5 chars_to_hex_encode()
vars.chars_to_hex_encode(<character_selection>)

Use this service to specify which characters should be saved in \xNN format.
Initially which characters are encoded is determined by the vars.ini/plugins.ini key
charsToHexEncode; if that's missing only characters under x20 encoded.

The format for the <character_selection> parameter and the charsToHexEncode
key is:

<character_selection> := rules separated by whitespace

rule := either a + or a -, followed by either a range_rule or a char_as_hex

range_rule := a char_as_hex followed immediately by a hyphen followed
immediately by by a char_as_hex

char_as_hex := two hex_digits

hex_digits := one of 0123456789ABCDEF

whitespace := any number of (but at least one) spaces and tabs

If a rule begins with a +, the following range or single character will be encoded in
\xNN format. If the rule begins with a -, the following range or single character will
be saved "as is".

So for instance the <character_selection> "-02-10 -80 +C0-FF" means: "save any
character with a value in the range x02 to x10 as is; save x80 as is; save all
characters with values above xC0 in \xNN format".

If a <character_selection> omits characters, those omitted characters continue to be
dealt with on saves as determined by the default behaviour; the charsToHexEncode
key; and any previous calls to chars_to_hex_encode.

If a <character_selection> includes characters, the rule for those characters is the
same as the one already in force, that's not an error; the rule is just left in force.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 19 of 32

10.6 error_dialog_on(), error_dialog_off()
Some vars services can result in errors. For instance, you might try to restore from
a non-existent ini file, or a variable might be defined in an ini file that wasn't
declared, and should have been. In addition to such errors setting a PowerPro
variable or returning a value with a status message the prefixed "ERROR:" (see
previous section); they will also trigger the standard PowerPro script error dialog,
allowing you to cancel all running scripts.

Under some conditions you might not want vars plugin errors to be treated as
scripting errors, and you would therefore not want to see the PowerPro script error
dialog. If that's what you want (maybe because you're testing for the presence or
absence of a section/key pair), invoke vars.error_dialog_off(), or make sure the
raiseErrors key in the configuration ini file is false or 0. Invoke
vars.error_dialog_on() to turn error dialogs back on after you turn them off.

If you unload the plugin, it's behaviour returns to the default in any subsequent call,
i.e. errors on further vars service will cause the error dialog to pop up.

Invoking vars.error_dialog_off() only affects error dialogs appearing when a vars
service call goes wrong. The normal PowerPro error dialog will appear if anything
else goes wrong in PowerPro.

10.7 config
vars.config(<name_of_ini_file>)

specifies a configuration ini file, with format, section and keys as described in
section 9.1

The ini file can either be given as an absolute path, or a path relative to the folder
returned by the pprofolder variable (generally the folder containing the currently
running powerpro configuration file).

Returns "OK" if file and found and there are no keys with illegal values, or a
message beginning "ERROR:" if there is one.

If you unload and reload a plugin, it's behaviour returns to the default or to that
defined by a default config ini file (see section 9.1).

.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 20 of 32

11.0 save, restore, save_var, restore_var: The Details

The basic form of the save, restore, save_var and restore_var services are
described above. But there's a lot of ugly detail if you want to stray away from the
simple life.

11.1 Where Variables Are Saved to and Restored from: the ini Files

If you're unfamiliar with how ini files work, see Appendix I: "The Structure of ini
Files".

Variables will be saved to, and restored from, a location affected by the
configuration ini file keys varsBackupLocation, varsBackupGlobalsLocation and
staticsSavedOncePerScript.

You can also explicitly override the rules outlined below by providing an explicit
name and location as the last (“<ini_file>”) parameter of the save or restore
services. See below.

varsBackupLocation can point either to a folder, or an ini file, in either case either
absolute or relative to the location pointer to be pprofolder (generally the folder in
which your running pcf file is located). If you don’t set it, it defaults to
<pprofolder>\scripts\vars. If the folder or ini file is specified with a relative path, it
will be taken as relative to the folder specified by pprofolder.

If varsBackupLocation is a folder, the implication is that you want to back up
variables that originate in each script file to an ini file with the same name as that
file, located in the folder you specified. So if varsBackupLocation is
"scripts\backup", and you execute vars.save from the script burble.powerpro,
variables will be saved to <pprofolder>\scripts\backup\burble.ini.

If varsBackupLocation is an ini file, the implication is that you want to back up
variables from all scripts to the same file. Variables originating from separate script
files will be distinguished by section names that incorporate the associated script
file/<tag>.

If you wish to have values of global variable stored in one file and one file only (and
therefore avoiding the somewhat dubious idea of a global variable having many
different values storied for many different scripts), set the
varsBackupGlobalsLocation key to the name and location of an ini file. If the ini
file is specified with a relative path, it will be taken as relative to the folder specified
by pprofolder.

If varsBackupLocation is an ini file, varsBackupGlobalsLocation can point to the
same file.

11.2 Explicit ini file parameters

If you specify an <ini_file> as a non-null-string final parameter to any vars service,
that file will be used instead of that determined by varsBackupLocation. If the ini

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 21 of 32

file is specified with a relative path, it will be taken as relative to the folder specified
by pprofolder.

If you specify an <ini_file> as a non-null-string fifth parameter , note that even if the
configuration ini file key varsBackupGlobalsLocation points to an ini file, global
values will not be stored there, but in the ini file you name as a parameter to
vars.save.

11.3 ini File sections

Regardless which ini file is used to save variables, for each script file + <tag>
combination there will be separate sections for:

• local scalar variables

• static scalar variables

• global scalar variables

• the names of all non-scalar variables (i.e. vectors and maps)

• for each non-scalar variable, a section recording its values

Sections names are moderately complicated. See Appendix II: "Section Names in
save/restore ini Files". Whatever you do, do not either modify or delete section
names, unless you’ve really genned up on how they work and want to roll your own
(e.g. to manage a change of configuration (see Section 11.7: “Caveats”).

Now the important bit: restore will obviously only restore variables (named as keys
in the appropriate section) it finds in the ini file. However, less obviously, save is
also driven by the ini file contents: only those variables that already have a key in an
appropriate section of the ini file will be saved (thus obviously overwriting the value
of the key in question).

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 22 of 32

11.4 Storing Global and Static Scalars

One possible interpretation of what a global variable means suggests it makes some
kind of sense to save values of global variables just once, in just one place,
regardless of which script they're being saved from. If you want to do that, specify a
non-null value for varsBackupGlobalsLocation, which must be a path to an ini file.

varsBackupGlobalsLocation and varsBackupLocation can point to the same ini
file (which would be a common arrangement if you wanted all variable information
from all scripts stored in one place).

Note that varsBackupGlobalsLocation is ignored if you specify an explicit ini file
as the last parameter of a service call: in that case all variables, globals or
otherwise, will be stored in the ini file explicitly specified by the parameter.

Or, you might chose to have varsBackupLocation point to a folder (implying
separate ini files for each script and varsBackupGlobalsLocation point to the file
in which globals are stored.

Even if you choose to storing the values of globals in just one location, you still have
to specify the names of those globals you want to save and restore in the correct
section for each script-name/proc-id (ending -global-scalars-]).

varsBackupGlobalsLocation is taken as null if you don’t specify it, i.e. by default
global values will be stored per script-name/proc-id, just like static and global
variables.

staticsSavedOncePerScript (a Boolean) determines whether statics are stored
once for an entire script file or separately for every <tag> within that file.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 23 of 32

11.5 Storing Collections

Variables that are collections (vectors or maps) have to be handled differently.
Once you’ve generated sections for a particular script/<tag>, there'll be a section
(ending -collections-] in which to name all maps and vector, regardless of storage
class (local, static, or global). Just add the names of the collection variables to that
section, as:

[myScript-myProc1-collections-]
myVector1=blah

When you next run vars.save without a second argument, two things will change. A
new section will be added to the ini file in which the values of that collection are
stored. And the entry in the list of collection variables will have as value the name of
that new section. E.g.

[myScript-myProc1-collections-]
myVector1=myScript-myProc1-local-vec-myVector1 10
….
[myScript-myProc1-local-vec-myVector1]
0=abra
1=ka
2=dab
3=ra

vars.save also puts a number after the entry in the list of collection variables. It's the
detected size for the collection: vector.capacity or map.length (map.capacity in
version 4.1.03 or later). It will be used by the plugin to recreate the vec or map if
required, i.e. it will become an argument to vec.create or map.create. You can
modify that size, and you can add any other arguments after it, separated by
commas, that are valid arguments for the relevant create service. For maps, that
would be useCase; for vecs: growth, minsize. See the relevant plugin
documentation for details.

The entire string found after the first blank character in the collection’s key's value
will be taken as the set of arguments to the create command for map or vec.

So for instance you might edit the above to tell the plugin restore service that the
vector myVector1 should be created with initial size 20, and should be allowed to
grow:

[myScript-myProc1-collections-]
myVector1=myScript-myProc1-local-vec-myVector1 20,1

When a collection is saved, the relevant ini section is deleted (to eliminate collection
elements that no longer exist) and recreated. Therefore it will appear to move to the
end of the ini file (where the win ini-manipulating API always appends new sections).

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 24 of 32

11.6 How Special Characters are Stored

Strings may include stuff that can't directly be saved to an ini file with about a bit of
messing about.

• \n, \r, \t, \\: are stored as the appropriate byte as part of variable strings.
If you output a newline or carriage return character to a text
file, you get a text string spanning several lines, which won’t
work in an ini file. So the bytes corresponding to \n, \r and \t
are converted back to "\n", "\r" and "\t" before a string is
written to an ini file by vars.save, and converted back again
when read in by vars.restore.

If you want to use a backslash before n, r, x or t without it
being treated as an escape character, use \\, then the letter.

A backslash before anything but n, r, t, x or \ have no special
significance and are just treated as literal backslashes.

• \x: \xNN is treated as the character corresponding to the hex
digits NN. There must be exactly two hex characters after \x

When saving a string any character with a hex value less than
0x20 will be saved in \xNN format. You can override the riule
determining which chacters are saved as \xNN using either
the vars.ini/plugins.ini key charsToHexEncode or the
chars_to_hex_encode service.

• leading and
trailing white
space:

is normally trimmed off by the API commands I use to write
and read ini files. Workaround is to enclose a string in
quotes; any blanks within the quotes string are preserved. So
you'll see all saved strings in an ini file generated by vars.save
are quoted. The quotes are stripped off by vars.restore.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 25 of 32

11.7 Caveats

You can mess things up nicely in all kinds of amusing ways.

In PowerPro you are allowed variables with different storage classes with the same
name, e.g. in a given procedure the variable blah could by defined as static, and
also already have been declared as global somewhere else. The vars plugin may
not behave as expected in such circumstances. In particular, when you are saving a
variable it may be detected as global but the value actually stored will be the current
static or local value.

Avoid duplicate variable names: They are bad scripting practice anyway.

Don’t delete or change ini section names in the files used to store variable values.
You have been warned.

If you change a variable’s name or storage class in a script, you have of course to
modify any and all ini file sections that refer to that variable. If you delete a variable
from a script, ditto.

If you change the name of a script file, you will have to change the names of all
sections of the ini file that are used by that file.

If you try to backup and restore variables from two scripts with the same name (have
to be in different folders, won't they?), you can only do it without collision if you
either

• use disjoint sets of <tag>s in the separate files, or

• always use the explicit-ini-file-name argument every time you call save and
restore from at least all-but-one of the identically-named script files.

If you change the vars.ini/plugins.ini configuration keys that govern save/restore,
you’ll have to modify the structure of the variable backup ini files. See Appendix III:
"How to Reorganise Backup ini Files If You Change Configuration".

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 26 of 32

11.8 Where Variables Are Saved from and Restored to: the Scripts

A single script file may contain many procedures, each starting with a label and
ending with a quit statement.

Variables in a procedure can be declared local, static or global, or have previously
been declared global. Two variables with the same name can, in any procedure, be
both global and static, or global and local. Best to avoid such multiple definitions if
you can: I haven’t tested every possible combination of multiple definition and
save/restore service calls, but its possible some such might not work right.

Normally variables can only be restored into a script in which all variables to be
restored have been declared (but see the next section for an exception); so on entry
to a procedure, first declare everything static, global or local, and create any vectors
or maps that have been saved; then invoke vars.restore. Then do your stuff, then
invoke vars.save with the same <tag> (if any) that you used when you restored.

12.0 Change History

• fixed a bug meaning ini config file not found on machines running non-
English version of windows

• added varsPluginFunctions.txt to be used as a file menu, perhaps merged
with pprofunctions.txt.

0.84: 26 July 2007

• Fixed a bug that resulted in failure to save large numbers of global or static
variables (with a symptom of complaining about an undeclared variable, one
with a truncated name of a genuine variable name).

• the local variable _t2mpn0g is now used any time you call any save or
restore service.

0.80: 30 November 2006

• fixed a bug which left the local variable _t2mpn0g undeclared before use in
some circumstances

• added version service.

• Changed, hopefully improved documentation. Among other things the
arguments I called <proc_id>s in previous versions of docs I now call
<tag>s, and are explained more thoroughly.

0.78: 5 October 2005

• Fixed error reporting bug in vars.save

0.77: 25 August 2005

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 27 of 32

• Fixed handling of map keys containing \n

0.75: 25 August 2005

• In saved strings, added handling for the \xNN (hex coded characters) and
now allow the escape character \ to itself be escaped (so \\ is a literal \). See
section 11.6.

• Added vars.ini/plugins.ini key charsToHexEncode and associated service
chars_to_hex_encode

0.70: 30 May 2005

• Added hyperlinks to documentation, and added doc in HTML help format;
tidied up and corrected documentation.

0.63: 9 April 2005

• fixed a bug in detection of globals and statics in save_var service.

0.62: 7 April 2005

• added save_var and restore_var services (see Sections 10.1, 10.2)

• changed rules regarding integration of the vars.ini/config.ini key
varsBackupGlobalsLocation when there’s an explicit <ini_file> parameter
to a service call: see Section 11.1.

• Fixed a bug affecting use of explicit ini file as last argument to restore
service.

0.60: 27 February 2005

• Fixed some bugs

0.57: 15 December 2004

• picklist code used when you use the save service and want to pick existing
statics or globals now allows multiple selection if you're using a version
PowerPro 4.1.04 or later.

0.56: 13 December 2004

• Fixed bugs in vars.save when creating new ini file.

0.55: 12 December 2004

• Fixed a few bugs in the picklist code used when you use the save service
and want to pick existing statics or globals to add to a (newish) ini file. Now
no limit on number of globals, and globals added will disappear from the
picklist.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 28 of 32

• When you use the save service and want to pick existing statics or globals to
add to a (newish) ini file, the picklists will now exclude relevant variables
already in the ini file

• New var.ini/plugins.ini configuration key allowDupVariableDeclares; if false
reports multiple declaration of same variable as error.

0.50: 9 December 2004

• first version

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 29 of 32

Appendix I: The Structure of ini Files

For those of you unfamiliar with ini files.

An ini file must have this internal structure:
[section name]
key_name= value
another key_name= another value
; a disabled key name= an old value

(... followed by more sections containing more name=value lines ...)

• Any lines starting with a semicolon are regarded as comments and cannot be
read
or written to by this plugin.

• Section names and key names are not case sensitive and may contain
spaces.

• Section names must be unique.
• Key names within each section must be unique.

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 30 of 32

Appendix II: Section Names in save/restore ini Files

In the table, italic text is variable, non-italic fixed for category

In section names, hyphens are used to prevent collision between set section names
and those (holding collection values) that include the name of a (map or vector)
variable.

In the next table, prefix is:

when all variables stored in a single ini file: script_name-<tag>

when variables for each script file held in a
separate ini file: <tag>

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 31 of 32

Section Name Formats

to record section name becomes

type
storag

e
class

names
or

values
location

scalar local names
values [prefix-local-scalars-]

scalar static names [prefix-static-scalars-]

scalar static values stored per <tag> [prefix-static-scalars-]

scalar static values stored per file [static-scalars-]

scalar global names [prefix-global-scalars-]

scalar global values stored per <tag> [prefix-global-scalars-]

scalar global values stored in one
place [-global-scalars-]

collection
local
static
global

names [prefix-collections-]

collection local values [prefix-local-vec-vector_name]
[prefix-local-map-map_name]

collection static values stored per <tag> [prefix-static-vec-vector_name]
[prefix-static-map-map_name]

collection static values stored per file

[script_name-static-vec-
vector_name]
[script_name-static-map-
map_name]

collection global values stored per <tag> [prefix-global-vec-vector_name]
[prefix-global-map-map_name]

collection global values stored in one
place

[-global-vec-vector_name]
[-global-map-map_name]

vars plugin v .87
7 May 2009

a PowerPro plugin to save/restore script
variables

by Alan Campbell

page 32 of 32

Appendix III: How to Reorganise Backup ini Files If You Change
Configuration

if ini config key is
changed:

you must

varsBackupLocation

from
folder to
ini file

merge the individual, one-per script ini files, first
prefixing each section name with script_file-

from ini
file to
folder

separate sections relating to each script file into
separate files,, first removing script_file- from each
section name

varsBackupGlobalsLocation

null string
to ini file

move [<file_name>-<tag>-global-scalars-] sections to
ini file for globals and rename [-global-scalars-]

move
[<file_name>-<tag>-global-<coll_type>-<coll_name>]
sections to ini file for globals and rename
[-global-<coll_type>-<coll_name>]

ini file to
null string reverse above procedure

staticsSavedOncePerScript
0 to 1

rename [<file_name>-<tag>-static-scalars-] sections in
each ini file to [<file_name>-static-scalars-]

rename
[<file_name>-<tag>-static-<coll_type>-<collection
name>] sections to
[<file_name>-<coll_type>-<collection name>]

1 to 0 reverse above procedure

	1.0 Overview
	1.1 This Document
	1.2 What’s New In This Version
	1.3 Terminology
	1.4 Uses
	2.0 Requirements
	2.1 Related plugins
	2.2 Reporting Bugs, Requesting Enhancements
	3.0 File list
	4.0 Installation
	5.0 Uninstall
	6.0 Acknowledgements
	7.0 Testing
	8.0 List of Services And General Notes on Usage
	9.0 Writing scripts using the vars plugin
	9.1 The Configuration ini File
	10.0 The Services
	10.0.1 The <tag> Argument
	10.1 save_var
	10.2 restore_var
	10.2.1 The <recreate_variable> Parameter
	10.2.2 Restoring a Collection: Some Notes

	10.3 save
	10.3.1 Setting up an ini File: the Parameters <create_sections>, <add_statics>, <add_globals>

	10.4 restore
	10.5 chars_to_hex_encode()
	10.6 error_dialog_on(), error_dialog_off()
	10.7 config

	11.0 save, restore, save_var, restore_var: The Details
	11.1 Where Variables Are Saved to and Restored from: the ini Files
	11.2 Explicit ini file parameters
	11.3 ini File sections
	11.4 Storing Global and Static Scalars
	11.5 Storing Collections
	11.6 How Special Characters are Stored
	11.7 Caveats
	11.8 Where Variables Are Saved from and Restored to: the Scripts

	12.0 Change History
	Appendix I: The Structure of ini Files
	Appendix II: Section Names in save/restore ini Files
	Appendix III: How to Reorganise Backup ini Files If You Change Configuration

