
pipe plugin for PowerPro: version .66 18 February 2008

A plugin to connect PowerPro installations across network,
receive input from redirected console programme output,

and connect to named pipes generally

by
Alan Campbell

This plugin creates named pipes. Named pipes are a remote
communication mechanism, which will connect your workstation
to other workstations on your LAN (but probably not to the
WAN: see Section 11.1 "Security and Authentication"). Your
system should be firewalled to prevent baddies from talking to
your pipes.

No warranty of any kind, express or implied, is included with this software; use at your
own risk Responsibility for damages (if any) to anyone resulting from the use of this
software rests entirely with the user.

1.0 Overview..3
1.1 This Document..3
1.2 What’s New In This Version...4
2.0 Requirements...5
2.1 Related plugins..6
3.0 File list...6
4.0 Installation..6
5.0 Uninstall...6
6.0 Acknowledgements...6
7.0 Testing...7
8.0 List of Services And General Notes on Usage..9
9.0 Writing scripts using the pipe plugin...10

9.1 Interfacing With Command Line stdout..11
9.2 The Configuration ini File...15
10.0 The Services..17

10.1 create...18
10.2 destroy...18
10.3 listen_on...19

10.3.1 How To Listen...24
10.4 listen_off...25
10.5 send_to...26
10.6 get_computer_names...28
10.7 get_ip_addr..29
10.8 returns_values(), returns_status(), returns_nothing()...29
10.9 error_dialog_on(), error_dialog_off()...29
10.10 config...30

11.1 Security and Authentication...31
11.2 Handles to Pipes...33

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 2 of 35

11.3 pipe_ Variables...34
12.0 Restrictions...34
13.0 Possible Enhancements...34
14.0 Change History ... 34

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 3 of 35

1.0 Overview

This PowerPro plugin allows communication:

• between Powerpro installations on different computers on the same network.
Communication is via named pipes.

• from command-line programmes that can redirect their (generally stdout) output; you can
redirect to e.g. \\.\pipe\Powerpro.

• with any named pipe accessible on your LAN, though I've yet to find a use for this. I
gather some programmes expose named pipes, e.g. some serious database servers.
Wikipedia says "Windows NT's entire NT Domain protocol suite of services are
implemented as DCE/RPC services over Named Pipes, as are the Exchange 5.5
Administrative applications."

• from and to most of the major scripting languages with a *nix tradition (Tcl, Python,
Perl) support named pipes, usually through the appropriate win32 package.

1.1 This Document

There are two version of this document, with the same content. There's an RTF file, which
looks nice in Word but is something like 200k in size; and there's a compiled help (CHM)
document, which is much smaller if somewhat uglier.

In my experiments I've found the RTF file doesn't display correctly in anything but Word
(not Keynote, even Wordpad: you've think Microsoft could at least get their rtf engines
consistent). So if you don’t have Word, better use the chm file.

Both documents have extensive hyperlinks. The table of contents at the front of each
document is a set of them.

The chm file has no index.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 4 of 35

1.2 What’s New In This Version

• fixed bug that crashed Powerpro when long strings sent to listening pipe

• bit of a crashing problem on unload, fixed I think

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 5 of 35

2.0 Requirements

According to http://world.std.com/~jmhart/pipenp.htm , "Windows 95/98 is limited to being
a named pipe client; it can not be a server".

So named pipes can't be created on win 9x boxes. So if you execute the listen_on service,
you better do it on a NT/2000/XP machine.

You should be able to send messages to a named pipe from win 9x.

Requires Powerpro version 3.4 or later. Test scripts require at least 3.8.15. Edit them to get
rid of ?c…c syntax to use with previous versions. They work in standard configuration.

If you want to send or receive binary data via pipes, you'll need the handles version of the
binary plugin. Get it here (a file of the form binaryWithHandlesPlugin*.zip):
http://groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Funny_Strings/

If you want to send or receive unicode strings via pipes, you'll need the handles version of
the binary plugin. Get it at the url above. You need at least unicode plugin version 0.65.

If you want to receive data into a vector, you'll need to use the vec plugin (part of the
Powerpro distribution).

Those of you who are tetchy about MFC will be happy to know that, unlike the registry
plugins, pipe.dll doesn’t require MFC support (e.g. MFC42.DLL).

Tested on W2000 sp4.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 6 of 35

2.1 Related plugins

If you pass a handle to a vector in, the pipe plugin accesses the vec plugin.

I'm working on a spread plugin, which will allow connection to anything connected to a
spread server. Spread is "A Reliable Multicast and Group Communication Toolkit"
available at http://www.spread.org/. Among other things, using spread would mean you can
communicate with other Powerpro installations on your LAN and, if you set security settings
appropriately, across the internet.

3.0 File list

plugins\pipe.dll
doc\pipePluginReadme.rtf
doc\pipePluginReadme.chm
scripts\pipePluginDemoScriptListenAndSendToSelf.powerpro
scripts\pipePluginDemoScriptListenToDOS.powerpro
scripts\pipePluginDemoScriptPipeVs2ppTiming
scripts\pipePluginDemoScriptListen.powerpro
scripts\pipePluginDemoScriptToOther.powerpro
scripts\pipe.ini

4.0 Installation

Copy pipe.dll from pipePluginX.XX.zip archive into your PowerPro directory, or into its
Plugins subfolder. If you want to provide an initial configuration of the plugin (see Section
9.2), edit pipe.ini and put it in the folder pointed to by pprofolder; or add its edited contents
to plugins.ini in the same folder.

All other files can go wherever you want.

5.0 Uninstall

Remove all files listed in the above section (“3.0 File list”) from wherever they went..

6.0 Acknowledgements

Me me me me.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 7 of 35

7.0 Testing: the Demo Scripts

I’ve provided the following demo scripts:

pipePluginDemoScriptListenAndSendToSelf.powerpro:

Creates pipes and send to them on the same Powerpro installation. A pointless exercise
(why send data to yourself?) you illustrates how to listen on and send to pipes, with and
without authorisation, in Powerpro.

pipePluginDemoScriptListenToDOS.powerpro:

Demonstrates how to redirect output from consol programmes to a Powerpro pipe. Most of
the ways Powerpro pipes can be set up to listen are illustrated here.

Normally one would be redirecting output from interesting console programmes that can get
information not easily available within Powerpro, these illustrations use standard win32
console commands like vol and echo.

pipePluginDemoScriptPipeVs2ppTiming:

Compares how long it takes to receive redirected console programme output using pipes
versus 2pp.exe. Runs the same command through a pipe a hundred times, then through
2pp.exe 100 times, and reports timings.

On my machine the former takes about four seconds, the latter about eight.

pipePluginDemoScriptListen.powerpro:

No edits required. Run this script on the workstation you want to send a message to before
running pipePluginDemoScriptToOther.powerpro. (Or: just execute pipe.listen_to via the
ARB, tiny command box, or any method you prefer.)

pipePluginDemoScriptToOther.powerpro:

Pick a workstation on the LAN you want to send a message to (which may be the
workstation you're running on) in the dialog thrown up at the beginning of the script. The
workstation you pick must be running pipePluginDemoScriptListen.powerpro.

To run the scripts:

Either:

• Put them in your <PowerPro configuration>\scripts directory

• Run scripts with a command (menu item?) in PowerPro like

*Script RunFile pipePluginDemoScriptListenAndSendToSelf or
.pipePluginDemoScriptListenAndSendToSelf.powerpro

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 8 of 35

Or:

• Put the scripts anywhere and double click on it (as long as PowerPro is already
running). This didn’t work on my machine until I manually set up an association
with .powerpro, but if your Powerpro installation went correctly it should work
for you.

The scripts will output both to the Debug window and (if you remove one comment in each
script) a log file. By default that file is “pipePluginDemoOutput.log” in same directory as
your pcf file. You can edit the script to point it another path/file if you wish: it’s the first line
of code in the script, and assigns a path/file name to the variable pipe_test_logfile. If you
assign the null string to pipe_test_logfile, no log file will be created.

None of the test scripts use the evaluate-expression operator "&" so are not dependent on
your choice for it. It uses the ?c…c syntax to avoid problems with your declared escape
character, so you should have no problems whether that's ' or \.

There are further comments on how the scripts work embedded in the scripts itself.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 9 of 35

8.0 List of Services And General Notes on Usage
Ensure pipe.dll is in your PowerPro installation directory, or in the plugins subfolder thereof.

There are numerous services in this plugin. They are (aliases are in italics):

These are described below, in section 10 and its subsections.

service description section

create creates a pipe object 10.1

destroy, release destroys a pipe object 10.2

listen_on, listen, on
listen_off, off

begin listening/cease listening for
incoming messages

10.3
10.4

send_to, send, to send a message 10.5

get_computer_names get names of all workstations on the
LAN

10.6

get_ip_addr get IP address of this workstation 10.7

returns_values
returns_status
returns_nothing

determine what if anything all other
services return via the calling form
returnval = pipe.service

10.8

error_dialog_on
error_dialog_off

turn PowerPro script error dialog on and
off

10.9

config set location of configuration ini file 10.10

version returns the plugin version number as four
digit number, last two to be taken as right
of decimal.

unload remove plugin from memory

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 10 of 35

9.0 Writing scripts using the pipe plugin

Call the appropriate plugin service as follows:

retval = pipe.<service>(arguments if any)

Results, if any, are generally available as the returned value from the above expression,
though there are alternatives.

The essential services are pipe.listen_on and pipe.send_to. If you want a machine to receive
messages from others, you must run pipe.listen_on on that machine. That machine will then
listen for messages sent to it until pipe.listen_off is called.

You send a message to a listening machine with pipe.send_to.

After you are finished using the pipe plugin in your script, you can if you wish unload it with

pipe.unload

It's probably best done if you do not foresee the plugin being used again for a while.

On the other hand, be very careful not to unload the plugin when a plugin pipe may be in the
middle of receiving data. In particular you should probably never unload from a script
which is triggered in response to data coming in (i.e. a script set with the
<command_to_call> parameter of listen_to).

By default, data, if there is any to be returned, comes back as the result of the service
expression (returnval in the above line). By default again, all services set a result string in
variable pipe_status.

If you wish different behaviour, call either returns_status() or returns_nothing().

If you call returns_status(), all subsequent service calls will return a result string as the result
of the call. pipe_status won’t be altered, and data will be returned via a variable (generally
pipe_value, but depends on the service: see details below).

Use returns_values() to return to default behaviour.

If you unload the plugin, it's behaviour returns to the default in any subsequent call, i.e.
further pipe service calls will return values.

There are other services which affect the behaviour of the pipe plugin (see sections 10.3-
10.7). You can also customise the behaviour of plugin services by providing a configuration
ini file (see section 9.2).

If you do an *Exec ChangeConfiguration, and the new and old pcf files are in different
folders, you should unload this plugin before using any of its services with the new
configuration. (only necessary if you use relative paths to specify the location of ini files).

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 11 of 35

9.1 Interfacing With Command Line stdout

You can redirect stdout of a command line programme in a console to a pipe with e.g.

echo win.debug(?.hello.) > \\MACHINENAME\pipe\<pipe_name>

A pipe created with Powerpro using

pipe.listen_on("powerpro", 0)

on the same machine can be reached with e.g.

echo win.debug(?.hello.) > \\.\pipe\powerpro

If you don’t like the syntax, you could define an environment variable e.g.

 set ppPipe=\\.\pipe\powerpro

You can then do

 echo win.debug(?.hello.) > %ppPipe

You can run a console programme (and send it's output to a Powerpro pipe) from within
Powerpro with something like:

file.runwait(0, env("COMSPEC"), ?"/c blah.exe > \\.\pipe\powerpro", "", "hide")

An alternative way of communicating with Powerpro, you could use the command line
utilities 2pp.exe, 2ppvar.exe and stdin2pp.exe written by Julien Pierrehumbert and available
at

http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Julien%27s_Plugins/.

Example of usage:

echo win.debug(?.hello.) | 2pp.exe

If you have 2pp.exe you can run pipePluginDemoScriptPipeVs2ppTiming.powerpro to
compare which technique is faster. It looks like if you close a pipe and reopen around every
invocation of %COMSPEC, using a pipe takes longer than 2pp (50% longer?). If you open a
listening pipe and listen on it continuously over a 100 invocations of %COMSPEC, takes
less time (30% less?).

ASAIK there’s no way to update a static variable with Julien’s utilities.

listen_on parameter <leave_crlf>: Most console programmes appended \r\n to each lines
output. Generally it's useful to have them stripped of data sent to Powerpro, so leaving it's
default value of 0 us probably good.

listen_on parameter <break_msgs>: Sometimes works sensibly, sometimes not, depending
on the DOS command. "vol" seems to send out two messages, one for volume name, one for
serial number. But "type" seems to break a file into a series of messages, neither of fixed
length nor representing text lines)

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 12 of 35

listen_off parameter <waitForDisconnectedPipe> is often useful if your console programme
is piping a substantrial amount of data to your pipe. It means disconnection won;'t take
effect until the sending process (the command line programme) disconnects.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 13 of 35

Here are some examples of using a pipe to pick up redirected data from console
programmes:

Invoke a function in same script file with incoming message as an argument; only safe
and workable if redirected data is a single, fairly short (< 40—450 characters) line:

pipe.listen_on("powerpro", 0, "", "", cbx("@usingFuncArg", "#"))
file.runwait(0, env("COMSPEC"), ?"/c echo some text > \\.\pipe\Powerpro", "", "hide")
pipe.listen_off

Execute a Powerpro command; with incoming message as an argument: only safe and
workable if redirected data is a single, fairly short (< 40—450 characters) line:

pipe.listen_on("powerpro", 0, "", "", "win.debug(#)")
file.runwait(0, env("COMSPEC"), ?"/c echo some text > \\.\pipe\Powerpro", "", "hide")
pipe.listen_off

Invoke a function in same script file:

pipe.listen_on("powerpro", 0, "st_sPipeData", scriptname, cbx("@usingStaticVar"))
file.runwait(0, env("COMSPEC"), ?"/c echo some text > \\.\pipe\Powerpro", "", "hide")
pipe.listen_off

echo a Powerpro command:

pipe.listen_on("powerpro", 0)
file.runwait(0, env("COMSPEC"), ?"/c echo win.debug(?#hi#) > \\.\pipe\Powerpro", "", ;;
 "hide")
pipe.listen_off

Put incoming data in a global variable, and pick up its value as soon as console
command completes:

global g_sPipeData
pipe.listen_on("powerpro", 0, "g_sPipeData")
file.runwait(0, env("COMSPEC"), ?"/c echo some text > \\.\pipe\Powerpro", "", "hide")
win.debug(g_sPipeData)
pipe.listen_off

Same as above: but "vol" returns two messages; only the first ends up in the global:

global g_sPipeData
pipe.listen_on("powerpro", 0, "g_sPipeData")
file.runwait(0, env("COMSPEC"), ?"/c vol c: > \\.\pipe\Powerpro", "", "hide")
win.debug(g_sPipeData)
pipe.listen_off

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 14 of 35

Return results in a global vector:

global g_hVec = vec.create(20, 1)
pipe.listen_on("powerpro", 0, g_hVec)
file.runwait(0, env("COMSPEC"), ?"/c vol c: > \\.\pipe\Powerpro", "", "hide")
win.debug("following vector filled from dos via pipe using vector in global variable")
local n = g_hVec.length
for (local i = 0; i lt n; i++)
 win.debug("vector element " ++ i ++ ": " ++ g_hVec[i])
endfor
pipe.listen_off

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 15 of 35

9.2 The Configuration ini File

On the first call to any pipe service, the plugin checks for a file called pipe.ini in the folder
pointed to by the Powerpro variable pprofolder (usually the folder in which the currently
active pcf file is found). It then looks for a [pipeConfig] section in that ini file. If that's not
found, it looks for the same section in the file plugins.ini in the same folder. If either are
found, it looks for the following values in the section:

* Only the first non-whitespace character of the key's value is checked, no matter how many
there are. So values "yes", "no", "true" or "false" will work. As usual the ini value is case-
insensitive, so "Y" and "FALSE" are also valid.

† Only the first non-whitespace character of the key's value is checked, so "status", "data" and
"none" will work.

If no pipe.ini or plugin.ini files are found with a [pipeConfig] section, the pipe plugin will
initially just use the compiled-in, default values (specified in the third column above) to
configure itself.

If an ini file with a [pipeConfig] section is processed, and there's a possible value that could
be in ini but isn't, the pipe plugin reverts to the default value for that value.

Once an ini file with a [pipeConfig] section is processed, its values stay in force until the
pipe plugin unloaded or the config service is run.

If the first service called is one which itself changes the configuration (e.g. use_long_vars,
error_dialog_on), the configuration ini file will be found and evaluated before the service is
applied.

If you want to change your initial configuration, you can use the ini plugin to do it. E.g.:

key possible
values

default
value

can also change
using service meaning

messageIdPrefix
string (max
30 chars)

none of your
business

none see Section 11.1

allowedSources
string (max
255 chars)

null string none see Section 11.1

messageIdPrefixRequired d a n d none see Section 11.1

insertionMarkerAll
string (max
10 chars)

listen_on
see listen_on,
<command_to_call> arg

insertionMarkerLines
string (max
10 chars)

£ listen_on
see listen_on,
<command_to_call> arg

raiseErrors
0 1
y n

 t f *
1

error_dialog_on
error_dialog_off

determines if errors in syntax
format, service arguments etc
cause Powerpro to raise the
script error dialog.

whatToReturn s d n † d
returns_values
returns_status
returns_nothing

for services which return data,
determines what is returned
by the service is the data, the
status (whether there was an
error or not), or nothing.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 16 of 35

ini.set(pprofolder ++ "plugins.ini", "pipeConfig", " messageIdPrefix", "HITHERE")

After making your changes, either:

• unload the pipe plugin. The next time you use one of its services, the new configuration
will kick in. Or

• run pipe.config(<path to configuration ini file>) .

If you do an *Exec ChangeConfiguration; and if the new and old pcf files are in different
folders; and if there's a pipe.ini or plugins.ini file in the new pprofolder, the configuration it
specifies won’t take effect until you take one of the steps above.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 17 of 35

10.0 The Services

Details of specific services follow.

The next sections describe services that affect the behaviour of all others.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 18 of 35

10.1 create

pipe.create([<default_pipe_name>])

used in demo script: pipePluginDemoScriptListenAndSendToSelf.powerpro

Creates a handle to a pipe object and returns a handle to it. You can (but don’t have to)
invoke the listen_on, listen_off and send_to services with a handle returned by create as
their first arguments. You can also use the object.service notation, e.g.

local hPipe = pipe.create
hPipe.listen_on("funny",…..)
….
hPipe.listen_off

<default_pipe_name> is the name used by listen_on and send_to services if they have no
<pipe_name> argument. It may be no longer than 255 characters in length.

If you call without any arguments, you'll get the handle to the default pipe (the one for the
pipe used if you call listen_on, listen_off or send_to without a handle).

Note that no two pipes concurrently listening can listen on the same <pipe_name>. So if
you create a pipe handle with the <default_pipe_name>, listen_on the default pipe (the one
without a handle) with no explicit <pipe_name>, and also attempt to listen_on the pipe
handle pipe, again with no explicit <pipe_name>, you will attempting to listen on two pipes
both with the address \\.\pipe\Powerpro, and your second call to listen_on will fail.

You can create up to 20 non-default pipes.

10.2 destroy

pipe.destroy(<pipe_handle>)

or

pipe_handle.destroy

alias: release

used in demo script: pipePluginDemoScriptListenAndSendToSelf.powerpro

Deletes a handle returned by the create service. If you attempt to destroy the handle to the
default pipe, you’ll not get an error message, but nothing will happen: the default pipe andle
always exists.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 19 of 35

10.3 listen_on

pipe.listen_on([<pipe_handle>] [, <pipe_name> [, <authenticate>
[, <var_name> | <vec_handle> | <binary_handle> | <unicode_handle>
[, <static_var_script> [, <command_to_call>
[, <leave_crlf>
[, <break_msgs> [, <markers>
[, <insertionMarkType> [, <cmd_on_dead_pipe>
[, <dead_pipe_folder>]]]]]]]]]]]]])

or

pipe_handle.listen_on([<pipe_name> [, <authenticate>
[, <var_name> | <vec_handle> | <binary_handle> |
 <unicode_handle>
[, <static_var_script> [, <command_to_call>
[, <leave_crlf> [, <break_msgs> [, <markers>
[, <insertionMarkType> [, <cmd_on_dead_pipe>
[, <dead_pipe_folder>]]]]]]]]]]])

aliases: listen, on

used in demo scripts: pipePluginDemoScriptListenAndSendToSelf.powerpro,
pipePluginDemoScriptListenToDOS.powerpro,
pipePluginDemoScriptPipeVs2ppTiming,
pipePluginDemoScriptListen.powerpro

Starts listening for messages.

All parameters are optional.

<pipe_handle>: A handle returned by the create service. If you don’t supply one (or
use one via the handle.listen_on(…) syntax) the default pipe that's
always available will be used.

<pipe_name>: If no pipe name is given or it's the null string, but there's a
<pipe_handle>, the pipe object's default pipe name is used. If
there's no <pipe_handle> or it's the null string, the pipe created with
the name specified by the defaultPipeName key in
pipe.ini/plugin.ini. This defaults to "Powerpro" if no key is
specified.

If you attempt to listen on two pipes simultaneously using the same
<pipe_name>, you'll get an error.

<pipe_name> may be no longer than 255 characters in length.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 20 of 35

<authenticate>: 0 or 1, or a string beginning "n" or "y". See below. Messages may
be accepted in authenticated message format (See Section 11.1,
"Security and Authentication"). If you omit the <authenticate>
parameter:

• If you don't specify a non-null <pipe_name> or explicitly
specify one identical to the default, authenticated message
format will be used.

• If you specify any other explicit <pipe_name>, it won’t be
expected: the incoming data will be assumed to be all message.

You can override these assumptions by explicitly specifying the
<authenticate> parameter as 0 or a string beginning "n" (no
authenticated message format); or 1 or a string beginning "y" (use
authenticated message format).

Normally you would avoid authenticated message format if
messages were coming from some source other then Powerpro, so
you'll want <authenticate> set to 0.

If a message is received in authenticated message format, the
variable <pipe_name> is set to the name of the originating
workstation; therefore the variable <pipe_name> should probably
be declared global before pipe.listen_on is called.

<var_name>: If present and not the null string, received data will be placed in this
variable. It should be declared before data is received. It should be
declared global, unless <static_var_script> is present.

<vec_handle>: If the variable named by <var_name> contains a handle to a
PowerPro vector, or in place of <var_name> you supply PowerPro
vector handle, data received by a listening pipe will be used to fill
that vector, one line per vector item. It’s your responsibility to make
sure the vector accessed by <vec_handle> is big enough for the
number of lines of data, or can grow to be big enough.

<binary_handle>: If the variable named by <var_name> contains a handle to a binary
block generated by the handles version of the binary plugin; or in
place of <var_name> you supply such a handle, data received by a
listening pipe will be used to fill that binary block. If you pass a
<binary_handle>, the <leave_crlf> parameter (see below) is
ignored.

Typically you'll be listening for a binary block if you expect data to
be send by pipe.send_to, also using a <binary_handle>.

Used in pipePluginDemoScriptListenAndSendToSelf.powerpro

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 21 of 35

<unicode_handle>: If the variable named by <var_name> contains a handle to a
unicode string generated by the unicode plugin; or in place of
<var_name> you supply such a handle, data received by a listening
pipe will be used to modify that string. You need at least unicode
plugin version 0.65. If you pass a handle, it must not be to the null
unicode string. If you pass a variable name containing a handle, it
can be the handle to the null string; it will be replaced with another
handle when data is received.

If you pass a <unicode_handle>, the <leave_crlf> parameter (see
below) is ignored.

Typically you'll be listening for a unicode string if you expect data
to be send by pipe.send_to, also using a <unicode_handle>.

Used in pipePluginDemoScriptListenAndSendToSelf.powerpro

<static_var_script>: The name (not path to) the script file in which <var_name> is a
static variable. To be useful <command_to_call> (see below)
should be a script in the same file

<command_to_call>: This will be executed when data is received by the pipe. Typically a
script, though it could be e.g. “win.debug(?#….#)” or
“*message data received #”, or even "myProg.exe".

If <command_to_call> is a script, don’t within that script call
pipe.listen_off or pipe.unload in that script, or you’ll end up stuck
in a loop or crashing.

Providing an empty string as <command_to_call> leaves it
unspecified but allows successive arguments to be appended.

If <command_to_call> contains a substring corresponding to the
parameter <insertionMark> parameter with <insertionMarkType>
beginning “a”, or, if <markers> parameter is absent, corresponding
to the configuration ini key insertionMarkerAll (or, if that’s
absent, “#”), the whole of the received data will be inserted as a
literal string enclosed in the esc() function at that point in
<command_to_call>. If <insertionMarkAll> appears to already be
enclosed in ?c…c delimiters, they’ll be removed.

If you've supplied a <vec_handle> or <binary_handle> and you
include an "a"-type insertion mark in <command_to_call>, the
handle will be inserted in the command in place of the insertion
mark.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 22 of 35

Be careful using an insertion mark without an handle, i.e. inserting
raw message data. The command sent will be <command_to_call>,
plus the incoming data as a literal string, plus a call to the Powerpro
esc() function, plus the starting folder path. Powerpro can only cope
with commands of 530 characters or less; if your incoming message
is longer than about 400 characters, you're in danger of hitting that
limit.

One alternative is to include instead a substring in
<command_to_call> corresponding to the <insertionMark>
parameter with <insertionMarkType> beginning “l”, or, if the
<markers> parameter is absent or null , corresponding to the
configuration ini key insertionMarkerLines (or, if that’s absent,
“£”), the received data will be broken into lines (delimited by \n or
\r, and each line inserted as a literal string enclosed in the esc()
function at that point in <command_to_call>. <command_to_call>
will be called once for each line. (if the insertion marker appears to
already be enclosed in ?c…c delimiters, they’ll be removed.). For
an alternative, see <break_msgs> parameter below.

If <command_to_call> contains the string <folder_marker> (“¦” by
default), all text after that string is taken as the folder in which is
<command_to_call> started. That generally only has effect if
<command_to_call> is an executable, batch file, link, etc; in
particular it will have no effect if <command_to_call> is a
PowerPro script or command.

<leave_crlf>: When piping in from a dos command line, \r\n is appended to the
end of each redirected line. The pipe plugin will strip these
characters off the endo of each message, unless you include this
argument and its value is 1 (valid values are 0, 1, or any string
beginning "y" or "n").

<break_msgs>: Normally when you receive input from an external pipe, all
messages coming through are accumulated until the external pipe
disconnects, then the resulting concatenated string sent on to
PowerPro as you specified in other arguments to listen_on.

When you redirect data from a console programme into a pipe, that
data sometimes arrives as a set of messages, one message per line of
output (that's not universal; nor do the messages necessarily make
sense).

You can request messages to be dealt with separately, so that each
message is separately forwarded to PowerPro by specifying "1" or
any string beginning "y" for <break_msgs>. If absent,
<break_msgs> is taken to be "0". Valid values are 0, 1, or any
string beginning "y" or "n").

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 23 of 35

<markers>: May contain up to two white-space separated strings:

<insertionMark> <folder_marker>

<insertionMark> indicates where to insert incoming data in a
<command_to_call>; see above. Can be any string up to ten
characters in length. You'll probably want a single character, and of
course you'll want a string that can’t legitimately occur in
<command_to_call>.

<folder_marker> (“¦” by default) indicates, in <command_to_call>,
the beginning of the path to the folder in which
<command_to_call> will be executed. Can be any string, but again
you'll probably want a single character, and of course you'll want a
string that can’t legitimately occur in <command_to_call>.

<insertionMarkType>: Begins “a” if previous argument <markers> is to be replaced with
all data, or “l” if it’s to be replaced with one line of data at a time.
Taken to be “a” if absent.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 24 of 35

<dead_pipe_cmd>: If a sending process makes a connection to a listening PowerPro
pipe, and then drops the connection, this script, if specified, will fire.
It's not always clear whether it's a good idea to use it or not. The
idea is to have a way of knowing when a sender completes data
transmission, but some senders may drop a pipe and re-establish
connection in the process of sending the "same" data, and others
may never relinquish connection. Use at your own risk.

If <dead_pipe_cmd> contains the string <folder_marker> (“¦” by
default), all text after that string is taken as the folder in which is
<dead_pipe_cmd> started. That generally only has effect if
<dead_pipe_cmd> is an executable, batch file, link, etc; in
particular it will have no effect if <dead_pipe_cmd> is a PowerPro
script or command.

<dead_pipe_folder>: the folder from which <dead_pipe_cmd> is executed; ignored if
<dead_pipe_cmd> is unspecified, or if it's a script call or

On successful return, pipe_status contains "OK", otherwise returns an error message
beginning "ERROR:".

10.3.1 How To Listen

When a message is received, what happens obviously depends on the parameters you used
with listen_on. Usually the object is to get Powerpro to respond when data arrives, and for
the response to have the message data available to work on.

A simple solution, if there's a small amount of data and a simple response, is to execute a
Powerpro command with inserted data e.g.:

pipe.listen_on("powerpro", 0, "", "", "*message data received: #")

That'll work only if there's a small amount of data.

If you expect to receive largish messages (greater than 400-450 characters), you're best to put
data in a variable using <var_name>, <vec_handle> or <binary_handle>. There's no limit
on the size of strings that can be put in vector elements, variables, or binary blocks.

My preferred approach is to set a static variable in <var_name>, set <static_var_script> to
the name of the file in which the variable is declared, and <command_to_call> to a function
in the same file.

I've found that the static variable and <command_to_call> can be the same file as the one
from which the listening pipe is launched. Seems to create no conflict.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 25 of 35

10.3.2 Listening for Non-Powerpro Sources

The pipe plugin listens on a message-type pipe. Message-type pipes treat the bytes written
in each write operation to the pipe as a message unit. That should work fine with any
application that writes to pipes using the ::CreateFile function.

If a sending application writes to a pipe and then hangs, waiting for Powerpro to read the
pipe, won’t work. The pipe plugin as listener assumes it's the server , not the sender.

Non-Powerpro sources don't know about the authentication rules used by Powerpro pipes
(See Section 11.1, "Security and Authentication"), so you probably want to listen on a pipe
without them.

See here for a more detailed discussion of sending data from console applications to
Powerpro pipes.

10.4 listen_off

pipe.listen_off([<pipe_handle>])

or

pipe_handle.listen_off()

alias: off

used in demo scripts: pipePluginDemoScriptListenAndSendToSelf.powerpro,
pipePluginDemoScriptListenToDOS.powerpro,
pipePluginDemoScriptPipeVs2ppTiming,
pipePluginDemoScriptListen.powerpro

Terminates listening and closes the listening pipe.

<pipe_handle>: A handle returned by the create service.

On success, returns "OK", otherwise returns an error message beginning "ERROR:".

Be careful not to call listen_off on a pipe currently receiving data. At best you'll just lose
data; at worst you get an error message.

In some situations using the listen_on parameter <cmd_on_dead_pipe> may be the
soluction: either make <cmd_on_dead_pipe> "pipe_listen_off", or an invocation of a script
that calls pipe_listen_off. That may not always work, or do what you want it to; some
processes break connection with a pipe and then re-establish it immediately to send more
data.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 26 of 35

10.5 send_to

pipe.send_to([<pipe_handle>,] <binary_handle> | <unicode_handle> | <data>
[, <machine_name> [, <pipe_name> [,<authenticate>]]])

or

pipe_handle.send_to(<binary_handle> | <unicode_handle> | <data>
[, <machine_name> [, <pipe_name> [,<authenticate>]]])

aliases: send, to

used in demo scripts: pipePluginDemoScriptListenAndSendToSelf.powerpro,
pipePluginDemoScriptListenToDOS.powerpro,
pipePluginDemoScriptPipeVs2ppTiming,
pipePluginDemoScriptToOther.powerpro

Pipes a message to <pipe_name> on <machine_name>.

If no pipe name is given, but there's a <pipe_handle>, the pipe object's default pipe name is
used. If there's no <pipe_handle>, the message is sent to the pipe whose name is specified
by the defaultPipeName key in pipe.ini/plugin.ini. This defaults to "Powerpro" if no key is
specified..

If <machine_name> is absent or the null string, the name of the machine on which this copy
of Powerpro is running used.

The receiving pipe most commonly will be one on which the pipe plugin is listening, i.e. for
which a pipe.listen_on has previously been issued. There's nothing to prevent you from
sending a message to yourself, i.e. for the sending plugin and receiving pipe to be the same.
(I do it for demo purposes in the demo script
pipePluginDemoScriptListenAndSendToSelf.powerpro). Normally not much point in
that; I think you'd normally be sending data from powerpro on one workstation to powerpro
running on another.

<pipe_handle>: A handle returned by the create service.

<binary_handle>: If this parameter is a handle to a binary block generated by the handles
version of the binary plugin; or the name of a variable containing such
a handle, the binary data in the byteblock will be sent. The receiving
pipe should of course also have been set up with a handle to a binary
block.

Used in pipePluginDemoScriptListenAndSendToSelf.powerpro

<unicode_handle>: If this parameter is a handle to a unicode string generated by the the
unicode plugin; or the name of a variable containing such a handle, the
unicode string will be sent. You need at least unicode plugin version
0.65.

Used in pipePluginDemoScriptListenAndSendToSelf.powerpro

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 27 of 35

<data>: If this parameter is neither a <unicode_handle> nor a
<binary_handle> the string you supply as data will be sent.

<machine_name>: If absent or the null string, the target pipe is assumed to be on the same
machine as instance of Powerpro is running..

<authenticate>: Messages may be sent in authenticated message format (See Section
11.1, "Security and Authentication"). If you omit the <authenticate>
parameter:

• If you don't use any pipename or explicitly specify one identical to the default,
authenticated message format will be used.

• If you specify any other explicit pipename, authenticated message format won't be
used: the provided <data> will be sent as-is.

You can override these assumptions by explicitly specifying the <authenticate> parameter
as 0 (no authenticated message format) or 1 (use authenticated message format).

Normally you would avoid authenticated message format if messages were being sent to a
destination other then a Powerpro installation (since recxipient wouldn't recognise the
authentication string.

On success, returns "OK", otherwise returns an error message beginning "ERROR:".

10.5 to_console

pipe.to_console([<pipe_handle>,] <console_command> [, <executable>
[, <current_directory>]])

or

pipe_handle.to_console(<console_command> [, <executable>
[, <current_directory>]])

aliases: console

used in demo scripts: pipePluginDemoScriptListenToDOS.powerpro,

The <pipe_handle> or default pipe must already be listening before you call to_console.

First time you call, the console process is created. <executable> and <current_directory>
on that call. <executable> assumed to be cmd.exe if omitted or null string.

Call with no args except <pipe_handle> destroys the console process.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 28 of 35

10.6 get_computer_names

pipe.get_computer_names()

used in demo script: pipePluginDemoScriptToOther.powerpro

On success, returns (or sets pipe_value to) a list of all available workstation names on the
LAN, separated by spaces. You can use the word() function to retrieve individual computer
names.

On success, sets pipe_status (or returns) "OK", otherwise returns an error message
beginning "ERROR:".

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 29 of 35

10.7 get_ip_addr

pipe.get_ip_addr(<machine_name>)

On success, returns (or sets pipe_value to) the IP address of the named machine.

On success, sets pipe_status (or returns) "OK", otherwise returns an error message
beginning "ERROR:".

10.8 returns_values(), returns_status(), returns_nothing()

These services determine what if anything the enum_xxx and get services return as retval in:

returnval = pipe.service(….)

By default, data, if there is any to be returned, comes back as the result of the service
expression (returnval in the above line). By default again, all services set a result string in
variable pipe_status.

If you wish different behaviour, call either returns_status() or returns_nothing().

If you call returns_status(), all subsequent service calls will return a result string as the
result of the call. pipe_status won’t be altered, and data will be returned via a variable
(generally pipe_value, but depends on the service: see details below).

The listen_on, listen_off and send_to services returns no data, only a result status, so they
will always return that result status as the return value of the service, regardless of which of
the returns_xxx services has been called.

Use returns_values() to return to default behaviour.

If you unload the plugin, it's behaviour returns to the default in any subsequent call, i.e.
further pipe service calls will return values.

10.9 error_dialog_on(), error_dialog_off()

Used in all demo scripts

Some pipe services can result in errors. For instance, you might try to use a duplicate pipe
name when listening on one. In addition to such errors setting a PowerPro variable or
returning a value with a status message the prefixed "ERROR:" (see previous section); they
will also trigger the standard PowerPro script error dialog, allowing you to cancel all running
scripts.

Under some conditions you might no want pipe plugin errors to be treated as scripting errors,
and you would therefore not want to see the PowerPro script error dialog. If that's what you
want (maybe because you're testing for the presence or absence of a section/key pair), invoke
pipe.error_dialog_off(), or make sure the raiseErrors key in the configuration ini file is
false or 0. Invoke pipe.error_dialog_on() to turn error dialogs back on after you turn them
off.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 30 of 35

If you unload the plugin, it's behaviour returns to the default in any subsequent call, i.e.
errors on further pipe service will cause the error dialog to pop up.

Invoking pipe.error_dialog_off() only affects error dialogs appearing when a pipe service
call goes wrong. The normal Powerpro error dialog will appear if anything else goes wrong
in Powerpro.

10.10 config

pipe.config(name_of_pipe_file)

specifies a configuration ini file, with format, section and keys as described in section 9.2

The ini file can either be given as an absolute path, or a path relative to the folder returned by
the pprofolder variable (generally the folder containing the currently running Powerpro
configuration file).

Returns "OK" if file and found and there are no keys with illegal values, or a message
beginning "ERROR:" if there is one.

If you unload and reload a plugin, it's behaviour returns to the default or to that defined by a
default config ini file (see section 9.2).

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 31 of 35

11.1 Security and Authentication

Pipes created by pipe plugin have unlimited access: they can be accessed by anybody.

Turns out this is the norm for named pipes on Windows. The issue is discussed at

http://www.beyondlogic.org/solutions/pipesec/pipesec.htm

where you can download the "Win32 Pipe Security Editor" which will allow you to see what
pipes are running on your machine, and examining their access rights (all, on my machine,
without exception, wide open).

So, for the moment, named pipes created by the pipe plugin have unlimited access rights.

I've included some rudimentary authentication via settings in pipe.ini or plugins.ini. If you
decide to require it, messages are sent prefixed by a series of characters to specify in the ini
key messageIdPrefix (which defaults to…well, never mind, you don’t need to know). This
prefix is immediately followed by the name of the originating workstation, followed by a
delimiting character.

The ini key messageIdPrefixRequired determines whether authentication is required. It
may begin:

first
letter

require authenticated message format?

d only for the default pipe name, typically the one used to send messages
between Powerpro installations, typically "Powerpro"

a apply to all pipe names, whether default or not

n never

Even if authenticated message format isn't required, if an incoming message string conforms
to it, it will be assumed that's what it is. So better make sure messageIdPrefix is a series of
characters that can’t possible occur in a "raw" incoming message. In particular it shouldn't
look like a Powerpro command.

If you want to send messages between Powerpro installations, both must either use
authenticated message format or both not. If they use it, both must use the same
messageIdPrefix.

You may specify a ini file key allowedSources, which is a list of allowed message
originators, the names separated by one or more blanks. If allowedSources isn't an empty
string (which it is, by default, if not set otherwise in pipe.ini/plugins.ini); and if an incoming
message is in authenticated message format; then the originating workstation name must be
in allowedSources. If it isn’t, the message is silently dropped.

For further security, if anyone wants it, I think I can add an option for pipes to inherit the
access rights of Powerpro.exe or pipe.dll. You would then shut down rights to either of

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 32 of 35

those using the usual file properties dialog, and thereby limit access to the pipes created by
pipe.listen_on.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 33 of 35

11.2 Handles to Pipes

There's a default pipe over which listen_on and send_to operate. But you can listen on and
send to additional pipes if you use the create service, which returns a handle to the created
pipe. A handle is just a simple string beginning "p\x07" followed by a number from 3000 to
3020.

Once you’ve got a <pipe_handle>, you can use it as the first argument in calls to listen_on,
listen_off and send_to (if you call those services without a <pipe_handle>, you’re using the
default pipe). Or you can use the handle.service notation instead:

local hPipe = pipe.create(“fruit”)
hPipe.listen_on("banana",…..)
….
hPipe.listen_off

hPipe.release

If you have PowerPro version 4.4.05 or later, and if a handle to a pipe is held in a local
variable, there's no need to use release it; it will automatically be released when the variable
goes out of scope at the end of the containing routine. You can override that automatic
override by using the localcopy service.

Scripting tip: if you're going to use this facility, don’t unload the pipe plugin at the end of
your script. PowerPro will need the plugin dll loaded in memory to do it's thing with local
handles.

If you do release a handle held in a local variable, best invalidate it by doing e.g.:

myLocalVar = pipe.release(myLocalVar)

On the other hand, don't lose a handle to a pipe by e.g. overwriting it without first releasing
the underlying object. This is a bad idea.

local hPipe = pipe.create("xxx")
 hPipe = "" ;; oops, lost the handle, and the plot

So is this:

local hPipe = pipe.create("xxx")
….
hPipe = pipe.create("yyy")

because the handle returned by pipe.create, though it will work in context, will be lost after
the expression is evaluated, so there'll be no handle to pass to pipe.release

However, I would imagine in most cases you will want a pipe to persist for a period of time,
not just for the duration of a script, so you’ll normally want to assign pipe handles to statics
or globals.

Unloading the pipe plugin will cause all structs and arrays to be released.

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 34 of 35

11.3 pipe_ Variables

These are the variables set by various services. The equivalent xn variable is given in case
you wish to invoke pipe.use_x_vars().

12.0 Restrictions

13.0 Possible Enhancements

At the moment pipes have no security: they can be accessed by anybody. I think I can add
an option for pipes to inherit access rights of Powerpro.exe or pipe.dll. You would then shut
down rights to either of those using the usual file properties dialog.

14.0 Change History

.66:

.64:

• <insertionMarker> parameter of listen_on is now <markers>, made up of
<insertionMark> and <folder_marker>.

• <command_to_call> parameter of listen_on can now include a <folder_marker>
followed by an initial folder.

• Corrected handling of text inserted as a literal string in a <command_to_call> when
a listening pipe receives data. In particular plugin now figures out current PowerPro
configuration escape character and uses that as necessary.

.62:

• You can now listen and send on more than one pipe at once; there's a default pipe
over which listen_on and send_to operate if you don’t create a handle and use it as
an argument to or object for those services. Therefore…

• Added optional argument <pipe_handle> to services listen_on, listen_off and
send_to. Also…

pipe_ var set by

pipe_status all services

pipe_value get_computer_names
get_ip_addr

pipe_name set when message received

pipe_msg may be set when message
received

pipe plugin v .66
18 February 2008

a PowerPro plugin to communicate via pipes
by Alan Campbell

page 35 of 35

• Added optional further arguments <var_name>, <static_var_script>,
<command_to_call>, and <leave_EOL>, <break_msgs>, <markers>,
<insertionMarkType> and <cmd_on_dead_pipe> to the listen_on service….

• …and therefore removed pipe.exe from distribution. It's easier to pipe from stdout
in a console command to e.g. \\.\pipe\Powerpro, which will listen as you specified in
your call to the listen_on service.

• You can specify a handle to a vector or a binary object in <var_name>.

• Documentation now and again named the service send_to as send_to_Powerpro.
Oops, sorry.

• Added version service.

• Added instructions on use \\.\pipe\Powerpro to do dos stdout redirection

• Added new configuration ini keys insertionMarkerLines and insertionMarkerAll .

• Renamed new configuration ini key powerProFormatRequired to
messageIdPrefixRequired

• Added new demo script pipePluginDemoScriptListenToDOS.powerpro.

• renamed all scripts pipePluginTest*.powerpro scripts to pipePluginDemo*.powerpro

.60:

• Fixed problem in pipe.listen_off

• Reduced size of dll

.59:

• Fixed bug in send_to, communicating back to PowerPro

.57:

• Added hyperlinks to documentation, and added doc in HTML help format; tidied up
and corrected documentation.

.50: First version

	1.0 Overview 2
	1.1 This Document
	1.2 What’s New In This Version
	2.0 Requirements
	2.1 Related plugins
	3.0 File list
	4.0 Installation
	5.0 Uninstall
	6.0 Acknowledgements
	7.0 Testing: the Demo Scripts
	8.0 List of Services And General Notes on Usage
	9.0 Writing scripts using the pipe plugin
	9.1 Interfacing With Command Line stdout

	9.2 The Configuration ini File
	10.0 The Services
	10.1 create
	10.2 destroy
	10.3 listen_on
	10.3.1 How To Listen
	10.3.2 Listening for Non-Powerpro Sources

	10.4 listen_off
	10.5 send_to
	10.5 to_console
	10.6 get_computer_names
	10.7 get_ip_addr
	10.8 returns_values(), returns_status(), returns_nothing()
	10.9 error_dialog_on(), error_dialog_off()
	10.10 config

	11.1 Security and Authentication
	11.2 Handles to Pipes
	11.3 pipe_ Variables
	12.0 Restrictions
	13.0 Possible Enhancements
	14.0 Change History

