
dialog plugin for PowerPro: version 1.19: 21 January 2009

A PowerPro Plugin to Construct and Run Dialogs
by Alan Campbell

No warranty of any kind, express or implied, is included with this
software; use at your own risk Responsibility for damages (if any) to
anyone resulting from the use of this software rests entirely with the
user.

1.0 Overview
Using this plugin you can build dialogs from within PowerPro scripts. You can
run the dialogs, modify them as they run, and get feedback from then using
event-handling PowerPro scripts.

You can also use some dialog services to access and modify controls in dialogs
other than those made by this plugin.

1.1 This Document
There are three versions of this document, with the same content. There's an
RTF file, which looks nice in Word but is something like four meg in size; and
there's a compiled help (CHM) document, which is much smaller if somewhat
uglier; and there's a pdf, with bookmarks for each section heading.

In my experiments I've found the RTF file doesn't display correctly in anything
but Word (not Keynote, even Wordpad: you've think Microsoft could at least get
their rtf engines consistent). So if you don’t have Word, better use the chm file.

Both documents have extensive hyperlinks. The table of contents at the front of
each document is a set of them.

The chm file has no index.

Sheri Pierce made an indexed pdf out of version 1.07 of this document,
available at http://tech.groups.yahoo.com/group/power-pro/files/Plug-
ins_and_add-ons.

http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 2 of 260
page 2 of 260

1.2 What’s New In This Version
• Changed parameters to choose_font allowing a <font_spec> instead of

a <target>, and variable name to be specified to set and return colour.
choose_font now used in controlFontChanger.powerpro.

• set_font applied to <window_handle> now returns the HFONT
associated with the window after set_font runs.

• Added a variant to clear service allowing deletion of font resource
referred to by an HFONT

• Fixed an error in set_font which caused PowerPro to crash if applied to
a window with the system font. Updated documentation for set_font to
describe more accurately when it works and when it doesn’t when
applied to a <window_handle>.

• Fixed a bug in choose_font which caused to initialise the font picker
dialog with garbage when <target> is a <window_handle>.

• Added to documentation for get_value(<window_handle>, “font”) variant;
usually doesn’t work on anything but controls

• Added variant of get_value with <property> “fonth” or “fonthandle”

• set_response now has <mouse_event>s "enter" and "exit" (to specify a
response to make when mouse enters a control's window, or leaves it).

• For statics, if you invoke set_response to set a response to a
<mouse_event>s; or set_colour with a <mouse_state>; The "notify"
(SS_NOTIFY) style will automatically be added to the control's styles.
Example of static with both a set_colour and a set_response to make a
static with a clickable url can be found in dialogPluginDemo7.powerpro.

• Added pdf version of documentation

• Fixed memory leaks in GDI and other resources (thanks to Sheri Pierce
for locating them). There are more leaks, will try to plug them in the next
version.

• Tooltips don’t work in XP if the powerpro manifest file
(powerpro.exe.manifest) isn’t present. Will try and fix.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 3 of 260
page 3 of 260

1.3 Requirements
Requires PowerPro version 3.4 or later. Test scripts require at least 4.8 RC3.
They work in standard configuration.

Some aspects of service calls are subject to fewer restrictions (see for instance
here or here) if you have PowerPro version 4.3.10.

If the <lParam> of send_message is a handle to a composite (array or struct),
you'll have needed the dll plugin to generate that handle.

If you create a dialog from, or export one to, an ini file, you’ll need the ini plugin
(found at
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry and Ini
Access/). You need version 1.52 or later

The test script dialogPluginDemo3.powerpro uses the reg plugin; you can edit
it so it doesn't.

dialogPluginDemo6.powerpro uses the odbc and/or sqlite plugins, and the dll
plugin (although the latter use isn’t essential and can be edited out).

dialogPluginDemo7.powerpro uses clock.avi in your %winDir folder, which I
think is there for all versions of windows. Let me know if it innit. It also includes
a static with both a set_colour and a set_response to make a clickable hotlink.

The test scripts regex\regexDialog.powerpro and
regex\regexDialogScintilla.powerpro require the regex and dll plugins, and
regexDialogScintilla.powerpro requires scilexer.dll. If you want to save or
load format settings to an ini file you’ll need the ini plugin (found at
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry and Ini
Access/).

dialog.dll doesn’t require MFC support (e.g. MFC42.DLL).

Tested on W2000 sp4.

http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 4 of 260
page 4 of 260

2.1 Reporting Bugs, Requesting Enhancements
This plugin is complicated. I have by no means tested every possible path
through the code, so bugs are likely.

If you hit any problems with this plugin (or any of my plugins, for that matter), it'd
be helpful if you reported them via the PowerPro forum
(http://groups.yahoo.com/group/power-pro/) in a message with a clear subject
line (maybe: "DIALOG PLUGIN: apparent error in:…."). I don’t read everything
in the forum, but I will see anything flagged with an obvious header. Please
include a copy of the script causing problems, and state which version of
PowerPro and of the dialog plugin you're using.

2.2 Related plugins
If you create a dialog from, or export one to, an ini file, you’ll need the ini plugin
(found at
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry and Ini
Access/). You need version 1.52 or later.

You can send messages to controls to modify or query them using the
dialog.send_message service. The <lParam> of send_message can be a
handle to a composite (i.e. to an array or struct; e.g., most messages that you
can send to the month-calendar date picker control require the use of pointers
to SYSTEMTIME structures). To get those handles, you'll have needed the dll
plugin (found at
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/).
There’s an example in the test script dialogPluginDemo6.powerpro.

Using the dll plugin is not for the faint-hearted (though if you’ve got to the point
where you even know what message you want to send, you’re probably
knowledgeable enough to do the right thing in the dll plugin). If you need help,
ask in the PowerPro forum.

Some example scripts require other plugins; see below, Section 7.0 "Testing".

http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/
http://groups.yahoo.com/group/power-pro/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 5 of 260
page 5 of 260

3.0 File list

dialog.dll

docs\dialogPluginReadme.rtf
docs\dialogPluginReadme.chm
docs\dialogPluginReadme.pdf
docs\dialog-related_defines.txt
docs\scintilla-related_defines.txt
docs\dialogPluginFunctions.txt

scripts\dialogPluginDemo1.powerpro
scripts\dialogSubordinate.powerpro
scripts\dialogPluginDemo2.powerpro
scripts\dialogPluginDemo3.powerpro
scripts\dialogPluginDemo4.powerpro
scripts\dialogPluginDemo5.powerpro
scripts\dialogPluginDemo6.powerpro
scripts\dialogPluginDemo7.powerpro
scripts\dialogPluginDemo8.powerpro
scripts\browse_for_file.powerpro

scripts\dialogPluginDemoFromConfigFile.powerpro
scripts\dialogPluginDemo.txt
scripts\dialogPluginDemo.ini

scripts\dialogPluginDemo.ico

scripts\resources\eye.bmp
scripts\resources\eye.gif
scripts\resources\eye.ico
scripts\resources\atlas.csv
scripts\resources\atlas.dbf
scripts\resources\atlas.db
scripts\resources\test.swf

scripts\regex\regexDialog.ico
scripts\regex\regexDialog.powerpro
scripts\regex\regexDialog.txt
scripts\regex\regexDialogScintilla.powerpro
scripts\regex\regexDialogScintilla.txt

scripts\controlFontChangerTest.powerpro
scripts\controlFontChanger.powerpro

scripts\notificationDialog.powerpro

scripts\dialogViewer.powerpro
scripts\dialogViewerTest.powerpro

scripts\skeletonDialog\skeletonDialog.powerpro
scripts\skeletonDialog\skeletonDialog.txt
scripts\skeletonDialog\skeletonDialog.ini
scripts\skeletonDialog\skeletonDialog.ico
scripts\sample.ini

scripts\dialogPluginDemoNonNative.powerpro

DialogEditor.exe
DialogEditor.ini
dialogEditorToUltraEdit.powerpro
dialogEditorToNotepad.powerpro
dialogEditorToWordpad.powerpro

dialog.ini

4.0 Installation

The dialogPluginX.XX.zip archive is organised in folders. If you unzip it within
the Powerpro installation folder and preserve folder structure, the plugin dll will
end up in your plugins folder, and the test scripts in your scripts folder. You
may however to kake control of installation by unzipping the archive somewhere
else, and manually moving stuff around. If you do that, copy dialog.dll from the
dialogPluginX.XX.zip archive into your PowerPro directory, or into its Plugins
subfolder. If you want to provide an initial configuration of the plugin (see
Section 9.1), edit dialog.ini and put it in the folder pointed to by pprofolder; or
add its edited contents to plugins.ini in the same folder.

The .powerpro scripts can go wherever you want. If you want the test scripts
dialogPluginDemo*.powerpro to work correctly, keep them in the same folder as

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 6 of 260
page 6 of 260

they unzip in; in particular make sure dialogPluginDemo.txt,
dialogSubordinate.powerpro and the resources folder are with them in the
same folder.

If you want to use the dialog editor DialogEditor.exe, that file and
DialogEditor.ini must go in the same folder. If you want to switch from dialog to
text editor and back again, an appropriate script to glue to your text editor (e.g.
dialogEditorToUltraEdit.powerpro, dialogEditorToNotepad.powerpro,
dialogEditorToWordpad.powerpro) must be on your path and may need to be
customised for your text editor (you can rename and relocate the scripts if you
want to: see the previous link).

If you want dialog.help to automatically open the chm/rtf documentation, you
may want to put one or the help files in the plugins folder and maybe rename
them. See section 10.32.

dialogPluginFunctions.txt can be appended to pprofunctions.txt supplied in the
PowerPro distro (or included in it, using

include <path to>\dialogPluginFunctions.txt)

It can then be accessed either as part of pprofunctions.txt or on its own as a file
menu (e.g. using a hot key associated with

*keys {filemenu <path to>\pproFunctions.txt})

dialog.dll is about 150k in size. If you want, you can use upx
(http://upx.sourceforge.net/) to compress it down to a third of that. Read about
the pros and cons at http://en.wikipedia.org/wiki/UPX.

5.0 Uninstall

Remove all files listed in the above section (“3.0 File list”) from wherever they went.

http://en.wikipedia.org/wiki/UPX
http://upx.sourceforge.net/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 7 of 260
page 7 of 260

6.0 Acknowledgements

Thanks to Bruce Switzer for help sorting out modal/non-modal dialog
interactions with PowerPro, and suggestions for features. In fact this plugin was
his idea in the first place.

I nicked some code for some dialog features from Chris Mallett's autoHotKey
source code (www.autohotkey.com).

I nicked descriptions of styles from either the appropriate MSDN page or Chris
Mallett's autoHotKey chm file.

Got code to load a gif or jpeg from Michael Chourdakis
(http://www.codeguru.com/cpp/g-m/bitmap/article.php/c4935/)

test.swf nicked from http://www.arseiam.com/math_frames.htm.

Code to resize controls when dialog resized cannibalised from DlgResizeHelper

(http://www.codeguru.com/cpp/w-d/dislog/resizabledialogs/article.php/c1913/)
by Stephan Keil.

Stole a good chunk of code for owner-draw buttons from the CbuttonST project
(http://www.codeproject.com/buttonctrl/cbuttonst.asp) by Davide Calabro, and
from "Owner-draw icon buttons in plain C"
(http://www.codeproject.com/useritems/odib.asp) by Bruno Challier.

Thanks to Sheri Pierce for suggesting and testing of the regex dialog scripts.
And she did a pdf of the 1.07 version of this document (at
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons).
She also spotted memory leaks in GDI and other resources prior to the 1.19
version.

And to Detlef Leidinger for suggesting and testing the define_set service, and
for suggesting "+" modified dimensions for dialog dimensions.

And to Andreas Mokros for suggestions on control resizing options.

http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons
http://www.codeproject.com/useritems/odib.asp
http://www.codeproject.com/buttonctrl/cbuttonst.asp
http://www.codeguru.com/cpp/w-d/dislog/resizabledialogs/article.php/c1913/
http://www.arseiam.com/math_frames.htm
http://www.codeguru.com/cpp/g-m/bitmap/article.php/c4935/
http://www.autohotkey.com/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 8 of 260
page 8 of 260

7.0 Testing and Sample Scripts

To exercise the plugin:

Put *.powerpro, *.ico and *.txt files in distribution in the same folder. The main
demo scripts are dialogPluginDemoN.powerpro, N varying from 1 to 6.

Then:

Either:

• run it with a command (menu item?) in PowerPro like

*Script RunFile dialogPluginDemoN or
.dialogPluginDemoN

Or:

• Put dialogPluginDemoN.powerpro anywhere and double click on it (as
long as PowerPro is already running). This didn’t initially work on my
machine until I manually set up an association with .powerpro, but if
your Powerpro installation went correctly it should work for you.

dialogPluginDemo*.powerpro scripts output to the Debug window.

All dialogPluginDemo*.powerpro scripts make extensive use of the PowerPro
cb() function which Bruce added in version 4.4.09, so if you’re running a version
prior to that, you have some editing to do.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 9 of 260
page 9 of 260

7.1 Sample Scripts Included with the Plugin Distribution
All sample scripts assume index base is zero, call set_base to make that so,
and resotre index base when they exit if required.

dialogPluginDemo1.powerpro illustrates edit controls, buttons, statics, list
controls, combo controls, images in statics, 3-state check controls, group
controls, scrollbars, radio buttons, specified notifications, call backs, tooltips,
fonts, the font common dialog. and right-click menus (see the "Text To Debug
Win" button). It also runs dialogSubordinate.powerpro as a modal sub dialog.
And illustrates enforcment of a single instance of a dialog from a script.

dialogPluginDemoFromConfigFile.powerpro creates a dialog from the dialog
definition file dialogPluginDemo.txt. If you edit line 3 of the script, you can get it
to use dialogPluginDemo.ini instead.

dialogPluginDemo2.powerpro illustrates use of system icons and the icons
built into the plugin; and the progress, spinner, slider date-time, status bar and
month calendar controls, resizing dialogs and the controls within them, and use
of set_position.

dialogPluginDemo3.powerpro illustrates activeX controls and font
specifications. Make sure resources\test.swf is in same folder as the script. It
assumes the existence of Office Web Components (aka MS Office) and
Shockwave/ Flash activeX components. If you don't have them, the dialog may
refuse to load (I hope it will just load with blank controls, but can't test). If you're
lacking a component, comment out the relevant bits of the script.
dialogPluginDemo3.powerpro uses the reg plugin to try to work out which
version of Office you have; if you'd prefer not to use the reg plugin, edit the
script to set the variable progID to the correct value.

dialogPluginDemo4.powerpro illustrates tab controls, tree view controls and
the use of the make_ctrl_handle service. Make sure resources\test.swf is in
same folder as the script.

dialogPluginDemo5.powerpro illustrates tree view, list view and statusbar
controls and the use of the make_ctrl_handle service.

dialogPluginDemo6.powerpro illustrates the list view control used as a way of
displaying contents of a database. Requires the odbc and/or sqlite plugins
(found at http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-
ons/0_Interfaces/Database_Interfaces/). The resources\atlas.* data sources
must be in the same folder as this script. atlas.db is a sqlite database, the other
atlas.* files are used as ODBC sources. dialogPluginDemo6.powerpro also
requires the dll plugin and illustrates use of dll.dereference to get data related to
a notification, although if you don’t want to use the dll plugin, you can just edit
out any calls to dll services.

dialogPluginDemo7.powerpro illustrates positioning of controls and buttons
with images, using various position modifiers on dimensions; and use of an
Animation control.

http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Interfaces/Database_Interfaces/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Interfaces/Database_Interfaces/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 10 of 260
page 10 of 260

dialogPluginDemo8.powerpro illustrates the dialog style "draggable", the
button image-related style "imgfill" and use of a <script_to_call> for a tooltip

controlFontChanger.powerpro illustrates manipulation of properties of dialogs
other than those generated by the dialog plugin.

Run controlFontChangerTest.powerpro to show a Powerpro inputDialog,
then run controlFontChanger.powerpro to change font size of the edit box in
that input dialog.

notificationDialog.powerpro demonstrates use of a dummy dialog to pop up a
balloon notification tooltip from the taskbar.

browse_for_file.powerpro demonstrates the use of the browse_for_file
service.

regexDialog.powerpro illustrates a use of the rich edit control (in the results
edit box, in "match" or "match all" modes. You'll need the regex plugin to make
it work, and the dll plugin to make up some structs for some of the
send_message calls in the script. You can get the regex plugin (from files of the
form regex*.zip) at http://tech.groups.yahoo.com/group/power-pro/files/Plug-
ins_and_add-ons/.

If you want to save or load format settings to an ini file you’ll need the ini plugin
(found at http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-
ons/0_Registry and Ini Access/) If you don’t want to use the ini plugin, you can set a
variable (st_sIniFile) in the configuration section of the script to null to prevent
ini file use.

Also illustrates use of browse_for_file service.

For some reason text formatting doesn’t always work for me in a rich edit
control; for which case I've added a switch (st_bHighlightingWorks) that alters
behaviour of regexDialog.powerpro to just select matches, not highlight them.

The regexDialog.powerpro script must be kept in the same folder as
regexDialog.ico and regexDialog.txt..

regexDialogScintilla.powerpro illustrates a scintilla control in same manner as
regexDialog.powerpro illustrates the use of rich edit controls; but you get a more
reliable demo of character formatting and you get visible whitespace if you want
it. It must be kept in the same folder as regexDialog.ico and
regexDialogScintilla.txt. It also requires the regex plugin, and, If you want to
save or load format settings to an ini file, the ini plugin (found at
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry and Ini
Access/) If you don’t want to use the ini plugin, you can set a variable
(st_sIniFile) in the configuration section of the script to null to prevent ini file use.

Also illustrates use of browse_for_file service.

If you want to try out the version in this distro, follow the instructions in the
readme.

http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Registry%20and%20Ini%20Access/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/
http://tech.groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 11 of 260
page 11 of 260

Differences between this version and Sheri's:

• I never got the positioning code to work right even in Sheri's original, so I've
just commented it out: this version just opens in centre screen foreground.

• You can drag the dialog by any part of it's background you can read (so
there's no separate "drag" button).

• The dialog isn’t reloaded every time you enter a search word, just the
combo box

• If you type a search word, the combo box will be reloaded automatically
when you stop typing for a two seconds (you can change that delay by
altering the static variable st_nTypingDelay). Setting st_nTypingDelay to
zero will suppress that behaviour….

• …and there are a bunch of other parameters you can change that
configure the script, all right at beginning of the start() function.

• There are shortcut keys for the search (S) and paste (P) buttons, and
escape has the same effect as hitting the cancel button.

• Tooltip on Paste button changes depending on whether help file or other
file is loaded.

Options are changed in a subsidiary dialog, instead of using hidden controls in
the main dialog. You can choose to change or edit the source file from that
same subsidiary dialog, instead of from a button on the main dialog.

dialogPluginDemoNonNative.powerpro tests use of dialog services to access
and modify controls in dialogs other than those made by the dialog plugin.

You can run dialogPluginDemo*.powerpro scripts multiple times, creating
multiple dialogs. Due to over-simplicity in script that runs when an event fires,
you'll only get blinking or progress bar movement in one of the multiple dialogs.

None of the scripts use the evaluate-expression operator "&" so is not
dependent on your choice for it. It uses the ?c…c syntax to avoid problems with
your declared escape character, so you should have no problems whether that's
' or \.

If you need to debug dialog scripts, you can run exec.scriptdebug(1) if the
dialogs are not foreground; that is the dialog.run service should not have a
<show_type> parameter of "foreground".

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 12 of 260
page 12 of 260

7.2 Other Scripts
In http://groups.yahoo.com/group/power-pro/files/Scripts/ :

Detlef Leidinger's FARMSIMF is a nice use of dialog and regex plugins.

sgp contributed MyConfigDialog, which used the dialog and vars plugin.

Sheri Pierce contributed CodeAccelerator, which uses dialog and reg plugins.

I've put in periodic_*.zip, an ini-driven set of scripts to run events every certain
number of days, but only if user to wants them to go (if not they're re-presented
the next day).

http://groups.yahoo.com/group/power-pro/files/Scripts/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 13 of 260
page 13 of 260

8.0 List of Services And General Notes on Usage

Ensure dialog.dll is in your PowerPro installation directory, or in the plugins
subfolder thereof.

There are numerous services in this plugin, listed below. All services that take a
dialog handle as a first argument

dialog.service(<dialog_handle>,….)

also allow the syntax

<dialog_handle>.service(….)

In addition aliases, listed below in italics, only work with the latter syntax:

<dialog_handle>.alias(….)

The services are:

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 14 of 260
page 14 of 260

service description section
define define a dialog's properties 10.1
define_control, control add a control definition to a dialog 10.2
make_ctrl_handle,
ctrl_handle

return a handle to a specific control to be used in
<handle_to_control>.service syntax 10.4

create creates a dialog as an invisible window, not yet executing 10.5
run run a dialog 10.6
show show (or hide) a dialog or control 10.7
enable enable or disable a control 10.8
set_focus, focus set focus to a control 10.9
get_value, get get text or other property of a control or dialog 10.10
set_value, set, modify, add set a control’s text or other value, or the dialog’s caption 10.11

clear, remove remove items from a control (list items, tabs, list view
columns, etc 10.12

set_tooltip, tooltip set a control's tooltip 10.13

set_range, range set range, page size for scrollbar, spinner, progress, or slider
controls 10.14

set_colour, colour set control's foreground, background colours 10.15
rgb get RBG COLORREF from red, green, blue values 10.16
set_image, image,
set_images, images set a static control's image 10.17

set_response, response change command, args, events for control or dialog 10.18
change_style, style change styles for a control or the dialog 10.19
set_icon, set_icons, icon,
icons, add_icon,
add_icons

change the dialog icon 10.20

set_font, font change dialog's or control's font 10.21
set_position, position change position or dimewnsions of dialog or control 10.22
get_last_clicked used in scripts responding to right mouse click 10.23
send_message, message,
send send a message to a control or dialog 10.24

browse_for_file bring up file open/file save common dialogs 10.25
choose_font bring up font common dialog 10.26
destroy_window kill off a dialog's window 10.27
destroy kill off a dialog and it's data structure 10.28
destroyall terminate all dialogs and their data structures 10.29

export export a created dialog to a text file: NOT YET
IMPLEMENTED 10.30

version returns plugin version number as four digit number, last two to
be taken as right of decimal. 10.31

help opens help file for plugin, if it can be found 10.32
returns_values
returns_status
returns_nothing

determine what if anything all other services return via the
calling form returnval = dialog.service 10.33

error_dialog_on
error_dialog_off turn PowerPro script error dialog on and off 10.34

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 15 of 260
page 15 of 260

service description section
set_base sets base when 10.35
config set location of configuration ini file 10.36
unload remove plugin from memory

These are described below, in Section 10 and its subsections.

There's also a service, editor_support, which is only there to allow interaction
with the dialog editor. Not generally for public consumption.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 16 of 260
page 16 of 260

9.0 Writing scripts using the dialog plugin

Call the appropriate plugin service as follows:

retval = dialog.<service>(arguments if any)

Results, if any, are generally available as the returned value from the above
expression, though there are alternatives.

After you are finished using the dialog plugin in your script, you can if you wish
unload it with

dialog.unload

It's probably best done if you do not foresee the plugin being used again for a
while.

Services that return data, by default, comes back as the result of the service
expression (returnval in the above line), and, by default again, set a result string
in variable dialog_status.

If you wish different behaviour, call either returns_status() or returns_nothing().

If you call returns_status(), all subsequent service calls will return a result string
as the result of the call. dialog_status won’t be altered, and data will be
returned via a variable (dialog_result).

Use returns_values() to return to default behaviour.

If you unload the plugin, it's behaviour returns to the default in any subsequent
call, i.e. further dialog service calls will return values.

There are other services which affect the behaviour of the dialog plugin (see
Sections
10.33 - 10.36). You can also customise the behaviour of plugin services by
providing a configuration ini file (see Section 9.1).

If you do an *Exec ChangeConfiguration, and the new and old pcf files are in
different folders, you should unload this plugin before using any of its services
with the new configuration. (only necessary if you use relative paths to specify
the location of ini files).

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 17 of 260
page 17 of 260

9.1 The Configuration ini File
On the first call to any dialog service, the plugin checks for a file called
dialog.ini in the folder pointed to by the Powerpro variable pprofolder (usually
the folder in which the currently active pcf file is found). It then looks for a
[dialogConfig] section in that ini file. If that's not found, it looks for the same
section in the file plugins.ini in the same folder. If either are found, it looks for
the following values in the section:

* Only the first non-whitespace character of the key's value is checked, no matter
how many there are. So values "yes", "no", "true" or "false" will work. As
usual the ini value is case-insensitive, so "Y" and "FALSE" are also valid.

† Only the first non-whitespace character of the key's value is checked, so
"status", "data" and "none" will work.

If no dialog.ini or plugin.ini files are found with a [dialogConfig] section, the
dialog plugin will initially just use the compiled-in, default values (specified in the
third column above) to configure itself.

If an ini file with a [dialogConfig] section is processed, and there's a possible
value that could be in ini but isn't, the dialog plugin reverts to the default value
for that value.

Once an ini file with a [dialogConfig] section is processed, its values stay in
force until the dialog plugin unloaded or the config service is run.

key
possibl

e
values

defaul
t

value

can modify
using service meaning

helpFileLocation path null none set to location of chm or rtf help
file

defaultFieldSeparator single
char | none

separator used to delimit fields
within lines in a dialog definition
file.

defaultEvaluationMarker single
char # none

used to mark a field for
evaluation in a dialog definition
file

set_base set base of

raiseErrors
0 1
y n

 t f *
1 error_dialog_on

error_dialog_off

determines if errors in syntax
format, service arguments etc
cause powerpro to raise the
script error dialog.

whatToReturn s d n † d
returns_values
returns_status
returns_nothing

for services that return results,
determines whether what is
returned by a service is the
value, the status (whether there
was an error or not), or nothing.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 18 of 260
page 18 of 260

If the first service called is one which itself changes the configuration (e.g.
error_dialog_on), the configuration ini file will be found and evaluated before the
service is applied.

If you want to change your initial configuration, you can use the ini plugin to do
it. E.g.:

ini.set(pprofolder ++ "plugins.ini", "dialogConfig", "raiseErrors", "1")

After making your changes, either:

• unload the dialog plugin. The next time you use one of its services, the
new configuration will kick in. Or

• run dialog.config(<path to configuration ini file>).

If you do an *Exec ChangeConfiguration; and if the new and old pcf files are in
different folders; and if there's a dialog.ini or plugins.ini file in the new
pprofolder, the configuration it specifies won’t take effect until you take one of
the steps above..

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 19 of 260
page 19 of 260

9.2 How to Create a Dialog
9.2.1 Don’t Bother: Use PowerPro Functionality

Many dialogs are available as simple PowerPro functions, which you can just
call from a script. See the "Input dialogs" section of PowerPro help. In particular
the the messagebox and the various input*** functions may be all you need.

Dialogs are available

You trigger from e.g. a button click (see for instance the ".." button near the
"Pick a file" edit box in the dialog created by the script
dialogPluginDemo1.powerpro).

9.2.2 Making the Dialog

There are two approaches. You can write a script, in which you use
dialog.define to declare the dialog's properties, and successive calls to
dialog.define_control to declare properties of controls. That looks like:

local hDlg = dialog.define(0, 0, 100, 100, "Hi there", "minbox",….)
dialog.define_control(hDlg, 10, 20, 20, 12, "button", "bt1", …)
dialog.define_control(hDlg, 50, 20, 20, 12, "button", "bt1",…)
….
dialog.run(hDlg)

Or, more elegantly, you can use the object.service syntax, with or without
service aliases:

local hDlg = dialog.define(0, 0, 100, 100, "Hi there", "minbox",….)
hDlg.define_control(10, 20, 20, 12, "button", "bt1", …)
;control is an alias for define_control
hDlg.control (hDlg, 50, 20, 20, 12, "button", "bt1",…)
….
hDlg.run

Or you can create a <dialog_definition_file>, which defines all the properties of
the dialog and its controls, which you then invoke from a script using the create
or run services. That script looks like:

dialog.run(<dialog_definition_file>)

and the dialog definition file like:

 0, 0, 100, 100, Hi there, minbox,…
10, 20, 20, 12, button, bt1,.....
50, 20, 20, 12, button, bt1,....

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 20 of 260
page 20 of 260

The good news: your script is a lot less complicated. Bad news: your
<dialog_definition_file> is pretty complicated. Personally, I find it easier to keep
track of what I'm doing by building a script with dialog.define and
dialog.define_control, but YMMV. Also, although I try to issue error messages
tagged with the offending line number when I detect an error in a dialog
definition file, I thing error reporting is probably better in a script where you build
the dialog control-by-control.

Speaking of error handling: I recommend that you initially run your dialog-
creating scripts with the default error handling behaviour, in which PowerPro
throws up an error dialog if there's a syntax error in your script or dialog
definition file. In other words, don’t invoke dialog.error_dialog_off() before
creating your dialog. It will be easier to detect problems, and given the number
of parameters and fields you have to play with, believe me, you'll have
problems.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 21 of 260
page 21 of 260

9.2.3 Modeless Versus Modal Dialogs

Once you've defined your dialog and it's controls. You run it. You can do that
as either a modeless or modal dialog. Difference is, a when you execute
dialog.run and specify modeless, your script keeps right on running; whereas if
you specify the <modal_mode> parameter as anything greater than 0, it's
modal, and you don’t return from your dialog.run statement under the user
dismisses it.

Which means, since there are quite a few ways you might want to customise
your dialog before the user sees it, you might be particularly interested in the
create service, which allows the dialog to come into existence as a window, but
not actually start executing as a dialog.

You can launch a modal dialog from another dialog, the launching dialog will be
disabled until the user dismisses the child dialog.

If you launch a modal dialog from another modal dialog, it is essential to pass
the correct <dialog_handle> as the owner for the second dialog. Bad Things will
happen otherwise.

You can create multiple simultaneous instances of the same modeless dialog by
running the same script more than once.

I've not worked out how to use an event in conjunction with multiple modeless
dialogs (to e.g. get a blinking control).

9.2.4 Configuring Controls

Many services that change control properties require that the control exist
before you can use them (the constraint is documented for each service). So
you may want to create a dialog, either from a <dialog_definition_file> or a
previously returned handle to a dialog by dialog.define

local hDlg = dialog.define(0, 0, 100, 100, "Hi there", "minbox",….)
hDlg.define_control(" 75 0 20 20", "static", "stPic1", "", "grayframe")
hDlg.define_control(" 0 p10 90 20", "slider", "trk1", "", "3d top
autoticks", ;;
 cb("@onSlide"), "", "", "green", "silver")
hDlg.create(0)

hDlg.set_image("stPic1", "exclamation")

hDlg.send_message("trk1", "cleartics", 1, 0)
hDlg.set_range("trk1", 1, 100)
hDlg.set_value("trk1", 30)….
….
hDlg.run("foreground")

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 22 of 260
page 22 of 260

9.2.5 Getting the Dialog to Do Stuff

Everything interesting in a dialog has to do with how it reacts to user actions.
For both the controls and the dialog as a whole, you can attach (via a service
parameter or dialog definition file field) the name of a script to run when a user
action occurs; an argument to pass to that script; and you can alter the events
that cause the script to run. Further, you can alter that behaviour at any time for
the dialog or any control by invoking dialog.set_response (although if you want
alternative behaviours when e.g. a user clicks a button, it's probably easier to do
conditional code in the scripts that run.).

My preferred style is to start a .PowerPro file with the code to create a dialog
and start it running, finishing that code section with a quit statement; then to
follow that block of code with various functions that would deal with various user
actions. Each <script_to_call> would then take the form:

cb("@onAction ") ;; cb() is the powerpro callback function

which would invoke

Function onAction(sUserArg, dlgHan, iCtrlNo, msg1, msg2)
local dialog_status
….
quit

Once a dialog is created, there are other services you can use to change a
dialog's or control's properties on the fly, in response to user actions. You can
change control colours, styles and text; change which control has focus;
change a scrollbar's properties and position; change a dialog's caption , icon or
styles; set an image in a static; show or hide a control; show, hide or otherwise
change the show status of the dialog; or enable or disable a control. There's a
list of all those services, and more, here.

In most of those services, you need to identify which control you want to operate
on (For instance, on a button press you might want to populate a list box, or
show a previously-hidden check box). You can refer to controls either by
number or name. The latter is one you provide as an parameter to
dialog.define_control, the former is handed out as the return value from each
dialog.define_control. I find using names somewhat more flexible; in particular if
you use numbers in reacting scripts to a dialog created from a
dialog_definition_file, you'll have to figure out what number to use by counting
control-description lines in the definition file, and adding a magic number to get
the control id. Not very safe if you change your dialog around.

If you need operate many times on the same control, it can be more convenient
to generate a <handle_to_control> , which can be used with the object.service
syntax.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 23 of 260
page 23 of 260

local tabCtrl = hDlg.make_ctrl_handle("tabctrl1") ;; tabctrl1 in control id
tabCtrl.set_images("exclamation", ?"plugins\dialog.dll", 3)
tabCtrl.set(1, "choices 1", 1, "eb1", "ax3swf", 1) ;; set is alias for set_value
tabCtrl.set(2, "choices 2", 2, "stFrame", "stHereis", "trk1", "lb1")

Services that don’t return a result useful to users (e.g. the get_* services)
usually (there are exceptions) return a handle to a control and which operate on
a control can be chained onto:

services onto which other
service calls can be chained

services onto which other
service calls can not be chained

change_style
clear
enable
set_focus
set_colour
set_font

set_image
set_position
set_range
set_response
set_tooltip
set_value
(usually)
show

browse_for_file
choose_font
create
define
define_control
destroy
destroy_all
destroy_window

get_value
make_ctrl_hand
le
rgb
run
send_message
set_icon

You can chain such services using the dot syntax: e.g. if iBoxNo is a list or
combo box id. E.g.

local hCb = dlgH.ctrl_handle(iBoxNo)
hCb.set("hello", "add").set("hello kitty", "add").set("hello fido", "add")
hCb.set("hello mouse", "add").set("hello erk", "add").set("hello tooth", "add")

(pinched from the populateBox function in dialogPluginDemo1.powerpro).
Same syntax is also used in regexDialog.powerpro).

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 24 of 260
page 24 of 260

9.2.6 Finishing The Dialog

Dialogs will have one or more buttons (with <id>s "ok" and/or "cancel") which
cause a dialog to stop processing messages. It is your responsibility in the
<script_to_call>s associated with the those controls to destroy the dialog.

There are three relevant services: dialog.show, dialog.destroy_window and
dialog.destroy.

dialog.show with the "hide" <show_type> parameter causes a window to
disappear from the screen, but you can still extract data from its controls.

destroy_window causes the dialog window to be destroyed, but the plugin data
structure and its associated < dialog_handle > still exists. It's safe to call
destroy_window in any <script_to_call> triggered by any control, but it's
irreversible: once the window's gone, it's gone.

dialog.destroy on kills off the plugin data structure and its associated
< dialog_handle > associated with a dialog, (as well as destroying the dialog
window) when it's timeto completely eliminate the dialog. I find it safe to call in a
<script_to_call> associated with e.g. a button for a modeless dialog, but, for a
modal dialog, only after the call to dialog.run that started that modal dialog has
returned.

If you want the <escape> key to close a dialog, you should have a control with
the <id> of "cancel" or “escapable” (normally a button). The former assumes
you will be destroying the dialog in your <script_to_call>, the latter assumes you
will not (and would therefore typically be hiding it instead).

If you want the alt <F4> key, or clicking on the X-icon in the dialog caption bar,
or on the “close” option in the control menu to close a dialog, you should either
have a control with the <id> of "cancel" and a defined <script_to_call>, or use
set_response with a <sys_command> of “close”. If you have both, the former
applies.

The <script_to_call> associated with a button with an <id> of "ok" will fire when
you hit the [enter] key.

There’s also the <action_on_close> parameter: see Section 11.5.3.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 25 of 260
page 25 of 260

9.2.7 Use PowerPro Functionality

You can trigger useful subdialogs (from e.g. a button click) created an managed
by built-in PowerPro functions. See the "Input dialogs" section of PowerPro
help. In particular the messagebox, pickstring, inputcolor, inputdate and
inputdatetime functions might be useful.

See for instance the ".." button near the "Pick a file" edit box in the dialog
created by the script dialogPluginDemo1.powerpro.

If you want to use dialogs thrown up by Powerpro using functions like pickstring
and inputcolor, you might want to make them act like modal dialogs with respect
to your plugin-generated dialog. Best way to do that is to disable the latter
completely, run your powerpro function, then reenable:

;first parameter is target, the pseudo control id for dialog as a whole
myDlg.enable(0 ,0)
local sStr = pickstring(sLines, "Pick one now!")
myDlg.enable(0 ,1)

9.2.8 Dealing with Index Base in Distributed Dialogs

If you plan to distribute your dialog to other users, remember that they may have an
indexBase key in their configuration ini file (dialog.ini or plugins.ini) that may not
be consistent with the base you've used in your script (only relevant if your
dialog uses (the clear or get_value (alias get) or set_value (alias set)services on
listviews, combo boxs, list boxs or tab controls.)

To get around this problem, it might be an idea to

• call set_base at the beginning of your script;

• save the indexBase key value (see the get_base() function in most sample
scripts);

• …and restore that saved key value when your dialog exits.

The second step requires the ini plugin.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 26 of 260
page 26 of 260

9.2.9 The Skeleton and Utility Dialogs

skeletonDialog.powerpro will run a simple dialog with "OK" and "Cancel"
buttons. A simple edit of the script allows you top create the same dialog from
the dialog_definition_files skeletonDialog.txt and skeletonDialog.ini. Might be a
place to start from.

dialogViewer.powerpro is a simple dialog that can be used to display text in an
edit box. It will run on it's own, or you can run it modal over notepad using
dialogViewerTest.powerpro

9.2.10 Multiple Simultaneous Dialogs From The Same Script

Generally no problem, unless you use static variables for anything (e.g. to hold
a handle to an event, or flags to control behaviour over time). Handles to events
and suchlike must instead by held in (normally hidden) controls, which will be
unique for each instance of a control. See for instance
dialogPluginDemo2.powerpro.

9.2.11 Enforcing a Single Instance of a Dialog from a Script

Best bet is probably to:

• store the handle to the dialog returned by dialog.define in a static. Best not
to set that static until just before you're ready to run the dialog; otherwise
your script may terminate on some error, and you'll be left with a static
pointing to a unworkable dialog. See sample script
dialogPluginDemo1.powerpro.

• set the static to something else (null string?) when the dialog is destroyed

• test for a non-null static variable at the beginning of your script, and if found
show the dialog in question

If you want your single instance of your dialog to respond to the escape key
(e.g. by going invisible), you'll need to provide a control (button?) with an <id> of
“escapable”.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 27 of 260
page 27 of 260

9.3 How to Use the Dialog Plugin to Manipulate Non-Plugin
Dialogs and Their Controls

9.3.1 Don’t Bother: Use the win plugin

First, get your handle. You need a handle to the dialog or the specific control
you want to manipulate. Use win.handle(cl) if you want to get the handle of a
dialog. You may need a combination of win.handle(cl,"text"),
win.childhandlelist and win.handlelist for controls. See
controlFontChanger.powerpro for an example.

To set the text of a control or dialog: win.settext(cl, "newtext") sends a
WM_SETTEXT which may set the text of the window matching cl to newtext. To
hide a control or dialog: use win.hide(cl), cl as above.

To show a hidden control or dialog: use win.showna(han) for a control,
win.showna(han) or win.show(han) for a dialog..

To enable/disable a control or dialog: use win.enable(han).

And so on. You should be able to use other win plugin services to get and set
positions, set tooltips, cause a control or dialog to flash, set transparency and
soon.

9.3.2 Fonts

dialog.set_font works with a first argument of a <window_handle>, which you
can obtain as above (handle(cl) for main windows (dialogs) or handle(cl,"text")
for controls).

dialog.get_value(<window_handle>, "font") gets the font of any window in a
format compatible with set_font.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 28 of 260
page 28 of 260

9.3.3 Using Other Plugin Services

Some services that take a dialog handle and a control id as first arguments can
take instead a window handle to a control, and that control can live in some
dialog or window not created by the dialog plugin. The plugin analyses the
window handle you pass in, and determines from the window’s class and styles
what type of control it is, as follows:

class… …with style… = control
type class… = control type

Button none of the following: button (II.1) msctls_trackbar32 slider (II.10)

Button BS_GROUPBOX group (II.2) msctls_progress32 progress (II.11)

Button BS_AUTOCHECKBOX checkbox (II.3) SysDateTimePick32 datetime (II.12)

Button BS_AUTO3STATE 3state (II.3) SysMonthCal32 monthcal (II.13)

Button BS_AUTORADIOBUTTON radiobutton
(II.3) AtlAxWin activeX (II.14)

Static N/A static (II.4) msctls_statusbar32 statusbar (II.15)

Edit N/A editbox (II.5) SysTabControl32 tab control
(II.16)

ListBox N/A listbox (II.6) SysTreeView32 treeview (II.17)

ComboBox N/A combobox (II.7) RichEdit20A richedit (II.18)

ScrollBar N/A scrollbar (II.8) Scintilla scintilla (II.19)

msctls_updown3
2 N/A spinner (II.9) SysListView32 listview (II.20)

It then allows the appropriate arguments for that service on that type of control.
(If you pass a handle that isn’t to a control, or is to a control of a class not
recognised by the plugin, you’ll get an error message. For instance many
controls that look like Listviews (real class: SysListView32) are in fact of classes
like ATL:BrowserListView or some Borland class. You may with to use a tool
like winSpector, Spy++ or AU3_Spy that comes with autoIt to determine a
control’s class).

I’ve added the test script dialogPluginDemoNonNative.powerpro to demonstrate
usage of some of the services below:

get_value (alias get), enable and show: should cause no problem for all
standard (classic controls), and for listViews and statusbars. So you can grab
all or part of a listview’s contents, hide or disable a button, probably get the
selected node in a listview (though haven’t tried that last). I can add support for
other common controls if required.

set_position: dunno. In theory you can change a control’s position and size, but
will that annoy the dialog’s owning process? User beware.

send_message: Might as well use win.sendmessage, unless you want to use
any of the named messages defined for each type of control

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 29 of 260
page 29 of 260

set_value: User beware. Changing the label on a button or butting text into an
edit box seems to work without horrible consequences (but of course you could
do the same win win.settext. Changing the contents of a listview or treeview
strikes me as very dicey: suddenly the user sees one set of data but the owning
application may think the underlying data is something different. On the other
hand it’s probably perfectly safe to change selection or focus in a remote
listview control.

set_font: I’ve tried it for edit boxes owned by Powerpro, might work for controls
belonging to other processes.

change_style: I tried it on notepad’s editbox and it got angry. Notepad???
Angry?? Probably a bad idea.

set_colour: may work, haven’t tried yet.

choose_font: all the argument does is determine the font used to inisialise the
font choice common dialog, so not sure why you’d use it, but you can.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 30 of 260
page 30 of 260

10.0 The Services

Details of specific services follow.

Some portions of some service arguments that recur in various services are
further described in subsections of Sections 11.0.

A few of the arguments to dialog services are pretty complicated. I’ve used the
following pseudo-BNF to document them.

<name> : a named argument or part thereof

<name> := … :what <name> is made up of

[] : an optional part

<this> | <that> : alternatives

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 31 of 260
page 31 of 260

10.1 define
dialog.define(<X>, <Y>, <width>, <height>, <caption> [, <styles>

[, <script_to_call>[, <command_arg> [, <events>
[, <action_on_close> [, <icon_path> [, <icon_number>
[, <font_spec> [, <right_click_command>]]]]]]]]]) or

dialog.define(<dimensions>, <caption> [, <styles>
[, <script_to_call>[, <command_arg> [, <events>
[, <action_on_close> [, <icon_path> [, <icon_number>
[, <font_spec> [, <right_click_command>]]]]]]]]]) or

Used in all sample scripts except those that create dialogs from
dialog_definition_files, i.e. all but dialogPluginDemoFromConfigFile.powerpro,
regexDialog.powerpro and regexDialogScintilla.powerpro

dialog.define defines a dialog's properties and returns a handle to that dialog
which can be used in other services.

If successful it returns a <dialog_handle>. See Section 11.1 "Handles to
Dialogs and the <dialog_handle> parameter". However, other service calls
cannot be chained to it (because services that return chainable handles require
that that handle be automatically deleted, and you probably don’t want handled
returned by define to disappear instantly…).

The arguments:

<X> Required (unless subsumed into <dimensions>): Horizontal position of
upper left hand corner of dialog, in dialog units. If you specify the "centre" or
"centremouse" styles, this parameter will be ignored.
If they're not ignored, relative to the upper left hand corner of screen, unless
you're creating or running the dialog as modal with a parent, in which case it'll
be relative to the upper left hand corner of that parent's window. May have a
sizing modifier.

<Y> Required (unless subsumed into <dimensions>): Vertical position of upper
left hand corner of dialog, in dialog units.
If you specify the "centre" or "centremouse" styles, this parameter will be
ignored.
If they're not ignored, relative to the upper left hand corner of screen, unless
you're creating or running the dialog as modal with a parent, in which case it'll
be relative to the upper left hand corner of that parent's window. May have a
sizing modifier.

<width> Required (unless subsumed into <dimensions>): Width of dialog, in
dialog units. May have a sizing modifier.

If prefixed by "+", dialog width will be maximum sum of <X> and <width> for any
control, plus the quantity after the "+"

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 32 of 260
page 32 of 260

<height> Required (unless subsumed into <dimensions>): Height of dialog, in
dialog units. May have a sizing modifier.

If prefixed by "+", dialog height will be maximum sum of <Y> and <height> for
any control, plus the quantity after the "+".

<caption> Required, but can be the null string: the dialog caption that will
appear on its title bar. No length limit.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 33 of 260
page 33 of 260

<styles> Optional: Keywords or letters (see this table), or numerical values
modifying the dialog’s styles. For further details in Section 11.4 “Styles: the
<styles> parameter”.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 34 of 260
page 34 of 260

Dialog Styles

this style
name

or
this

letter
#define’d symbol means

sysmenu s WS_SYSMENU add sysmenu box to dialog
caption bar

minbox n WS_MAXIMIZEBOX add maximize box to dialog
caption bar

maxbox x WS_MINIMIZEBOX add minimize box to dialog
caption bar

centre c DS_CENTER centre dialog on screen

centremous
e m DS_CENTERMOUSE

centre dialog on mouse location

noborder WS_BORDER prevents border being applied

nodlgframe ~WS_DLGFRAME
prevents WS_DLGFRAME style
being applied, which means no
double border

thickframe t WS_THICKFRAME creates a dialog with a thick
frame that can be used to size it

3d 3 extended style
WS_EX_CLIENTEDGE makes 3d effect

modalframe - extended style
WS_EX_DLGMODALFRAME

hidden h ~WS_VISIBLE prevents WS_VISIBLE being
applied, hiding dialog

tool
toolwin -

extended styles
WS_EX_WINDOWEDGE |
WS_EX_TOOLWINDOW

creates tool window; title bar
shorter than normal, title drawn
in smaller font;. doesn't appear
in task bar ALT+TAB

topmost - extended style
WS_EX_TOPMOST

dialog placed above all
nontopmost windows and stay s
above them even when the
dialog is deactivated

draggable - -
can be dragged by mouse in
client area of dialog (as well as
in title bar)

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 35 of 260
page 35 of 260

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 36 of 260
page 36 of 260

<script_to_call> Optional. A PowerPro command to execute if an interesting
event is fired by a control and that control doesn’t handle it itself. For further
details in Section 11.5 “Script Calls and Their Arguments”.

<command_arg> Optional. An argument passed to the above command if it’s
invoked. If present <script_to_call> must not be the null string. For further
details in Section 11.5 “Script Calls and Their Arguments”.

<events> Optional. A list of notifications accompanying a WM COMMAND
message that may cause <script_to_call> to be executed. See Section 11.6
“Specifying Which Messages Are Responded To”.

<action_on_close> Optional: a PowerPro command that will run if you close a
dialog by any means but clicking a button. Further details here.

<icon_path> and <icon_number> Optional: Specify an icon for the dialog. For
details see Section 11.8 “Icons: the <icon_path>, <path_to_image> and
<icon_number> parameters”.

<font_spec> Optional: The dialog’s font. If specified, all controls within the
dialog use this font (otherwise they use the system font). (Windows always
uses the system font for the title of the dialog box; you can’t override that). See
Section 11.9 "Fonts: the and <font_spec> parameters".

<right_click_command>: Optional: If present, normally a command that causes
a PowerPro menu to appear, thus simulating a context menu, e.g. using
menu.show or cl.ShowMenu. The script will be run if dialog user right clicks on
any part of a dialog not containing a control. See Section 11.11:
"<right_click_command>: Context Menus"

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 37 of 260
page 37 of 260

10.2 define_control
dialog.define_control(<dialog_handle>, <X>, <Y>, <width>, <height>,

<control_type> [,<name> [,<text_or_var> [, <styles>
[, <script_to_call> [, <command_arg> [, <events>
[, <foreground>, [<background> [, <id>
[, <font_spec> [, <tooltip> [, <tooltip_style>
[,<right_click_command>]]]]]]]]]]]]]) or

<dialog_handle>.define_control(<X>, <Y>, <width>, <height>,
<control_type> [,<name> [,<text_or_var> [, <styles>
[, <script_to_call> [, <command_arg> [, <events>
[, <foreground>, [<background> [, <id>
[, <font_spec> [, <tooltip> [, <tooltip_style>
[,<right_click_command>]]]]]]]]]]]]]) or

dialog.define_control(<dialog_handle>, <dimensions>,
<control_type> [,<name> [,<text_or_var> [, <styles>
[, <script_to_call> [, <command_arg> [, <events>
[, <foreground>, [<background> [, <id>
[, <font_spec> [, <tooltip> [, <tooltip_style>
[,<right_click_command>]]]]]]]]]]]]]) or

<dialog_handle>.define_control(<dimensions>,
<control_type> [,<name> [,<text_or_var> [, <styles>
[, <script_to_call> [, <command_arg> [, <events>
[, <foreground>, [<background> [, <id>
[, <font_spec> [, <tooltip> [, <tooltip_style>
[,<right_click_command>]]]]]]]]]]]]])

alias: control

Used in all sample scripts except those that create dialogs from
dialog_definition_files, i.e. all but dialogPluginDemoFromConfigFile.powerpro,
regexDialog.powerpro and regexDialogScintilla.powerpro

dialog.define_control() adds knowledge of a control and it's properties to an
existing dialog. It returns a handle to a control, which can be used in other
services to indicate which control you want to operate on. Other service calls
cannot be chained to define_control (because services that return chainable
handles require that that handle be automatically deleted, and you probably
don’t want handles returned by define_control to disappear instantly).

Normally the drill is to invoke define_control (a lot) before a dialog is created or
run. However, you can call it after either created or run if you want to. Most
likely reason to do that would be that you create a dialog from a
<dialog_definition_file>, then add to it using dialog.define_control.

Once a control has been defined, you can’t undefined or delete it from the
dialog of which it is part. On the other hand you can hide controls at any time

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 38 of 260
page 38 of 260

using the dialog.show service, so they can seem to "disappear" as far as the
dialog user is concerned.

The arguments:

<dialog_handle> Required: A handle returned by dialog.define. See Section
11.1 "Handles to Dialogs and the <dialog_handle> parameter".

<X> Required (unless subsumed into <dimensions>): Horizontal position of
upper left hand corner of control, relative to upper-left hand corner of dialog, in
dialog units. May have a sizing modifier. May be relative to the previous
control.

<Y> Required (unless subsumed into <dimensions>): Vertical position of upper
left hand corner of control, relative to upper-left hand corner of dialog, in dialog
units. May have a sizing modifier. May be relative to the previous control.

<width> Required (unless subsumed into <dimensions>): Width of control, in
dialog units. May have a sizing modifier. May be relative to the previous
control.

<height> Required (unless subsumed into <dimensions>): Height of control, in
dialog units. May have a sizing modifier. May be relative to the previous
control.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 39 of 260
page 39 of 260

<control_type> Required: A letter or word specifying the control type:

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 40 of 260
page 40 of 260

control types

this control
name

or
this

letter
details in
Appendix

default
WM_COMMAND

notifications
handled

other notifications
that might be useful

styles:
in addition to
those applying
to all controls

button b II.1 BN_CLICKED BN_DBLCLK see this table

group g II.2 none see this table

checkbox c II.3 BN_CLICKED see this table

3state 3 II.3 BN_CLICKED see this table

radiobutton r II.3 BN_CLICKED see this table

static t II.4 none STN_CLICKED
"notify" see this table

editbox e II.5 none EN_CHANGE see this table

listbox l II.6 none LBN_SELCHANGE see this table

combobox o II.7 none CBN_SELCHANGE
CBN_EDITCHANGE see this table

scrollbar s II.8
none;

WM_HSCROLL,
WM_VSCROLL
always handled

see this table

spinner u II.9
none;

WM_HSCROLL,
WM_VSCROLL
always handled

see this table

slider r II.10
none;

WM_HSCROLL,
WM_VSCROLL
always handled

see this table

progress p II.11 none see this table

datetime d II.12 none see this table

monthcal m II.13 none see this table

activeX x II.14 none none

statusbar - II.15 none see this table

tabcontrol - II.16 none see this table

treeview - II.17 TVN_SELCHANGED see this table

richedit - II.18 none EN_CHANGE see this table

scintilla - II.19 none no special

listview - II.20 none see this table

animation - II.21 none see this table

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 41 of 260
page 41 of 260

<name> Optional: The name by which the control can be referred to as its
control id (see Section 11.3 "Control Ids"). If you're going to use it as control id
in other service calls, better make sure it's non-null. Names must

• be unique (case sensitive comparison used) within a dialog:

• be of 2-63 characters in length

• must begin with an alphabetic character

• must not be the same (case insensitive) as any of the <show_type>s
allowed for the show command; the <foreground> or <mouse_state>
parameters of set_colour; the possible styles that can apply to a dialog with
change_style; and the properties that can be applied to dialogs in a call to
get_value (alias get). Here's an alphabetical list of all those reserved words:

aqua
black
blue
centre
centremou
se
default
focus

focused
font
foreground
fuchsia
green
grey
hover

hovering
hwnd
lime
maroon
maxbox
maximize
minbox

minimize
navy
noborder
nodlgframe
normal
olive
owner

pressed
prevctrl
purple
red
restore
silver
sysmenu

teal
thickframe
traydel
trayicon
traymin
white
yellow

Given all these restrictions, you could name controls, with some sort of prefix
containing no vowels, indicating the type of control (bt for button, cb for combo,
etc); followed by a few more meaningful characters, again ideally omitting
vowels from common words to minimise the possibility of collision with the
reserved words listed above.

You’ll get an error message if you break the rules.

If omitted, a control's <name> is the null string and can’t be use in subsequent
scripting to refer to the control. You still have the control's handle, returned by
define_control and many other services.

<text_or_var> Optional: If present, the plugin checks to see if the string provided
is the name of an already-declared global or static variable. If it is, the value of
that variable is taken as the text of interest. The static must be declared in the
script that creates the control in question.

The text, whether literal or in a variable, becomes the displayed text for buttons,
check box controls, radio buttons, groups and edit controls; an ampersand
included in the text will appear underlined and act as a shortcut key for the
control. For list controls and combo box controls, it's used to populate the lists;
separate items with newlines (“\n”).

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 42 of 260
page 42 of 260

There's no length limit on <text_or_var>.

If <text_or_var> is the name of a global or static variable, and there’s a control
(normally a button) created with an <id> parameter of “ok” (i.e., a default
button), when that default button is pressed (or the user hits the return key,
same thing), any global or static variables associated with any control via the
<text_or_var> parameter will be updated with the control’s current value.

<styles> Optional: Keywords or letters, or numerical values modifying the
control’s styles. Some keywords apply to all controls: see this table. Other
keywords work only for a specify type of control: see the appropriate table
indicated above. For further details see Section 11.4 “Styles: the <styles>
parameter”.

<script_to_call> Optional: A PowerPro command to execute if an interesting
event is fired by the control. See Section 11.5 “Script Calls and Their
Arguments”.

<command_arg> Optional: An argument passed to the above command if it’s
invoked. If present <script_to_call> must not be the null string. See Section
11.5 “Script Calls and Their Arguments”.

<events> Optional: A list of notifications accompanying a WM COMMAND or
WM_NOTIFY message that may cause <script_to_call> to be executed. See
Section 11.6 “Specifying Which Messages Are Responded To”.

<foreground> Optional: The control text colour. See Section 11.7 “Colours”. If
"default" or the empty string, becomes default text colour for the type of control.
Has no effect on tab control, animation or spinner, scrollbar or activeX controls.
For date picker, month-calendar, treeview and listview controls, this parameter
can be interpreted as the part of the control you wish to colour.

<background> Optional: The control background colour. See Section 11.7
“Colours”. If "default" or the empty string, becomes default background colour
for the type of control. Has no effect on tab control, animation, spinner or
activeX controls. For date picker, month-calendar, treeview and listview
controls, this parameter can become the one colour you wish to set part of the
control to.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 43 of 260
page 43 of 260

<id> Optional: Can be "cancel", "ok" or "escapable", case-insensitive.

• "ok": control is the default (usually a button); the control's
<script_to_call> is executed if the user exits by hitting the
<enter> key. It's assumed the <script_to_call> will destroy the
dialog with something like

dlgHan.destroy()

If you’re going to associate a global or static variable with a
control via the <text_or_var> parameter, you must have a
control with an <id> of “ok”, i.e. a default button.

There must be at most one control (normally a button) with an
<id> of "ok”.

• “cancel”: the control's <script_to_call> is executed if the dialog is exited
by user hitting the <escape> key; or, if you haven’t specified a
<script_to_call> to perform by a call to set_response for the
“close” <sys_command>, if the user hits the alt-F4 key, or
selects "close" on the system menu, or the "X" at the far right
of the title bar.

It's assumed the <script_to_call> will destroy the dialog with
something like

dlgHan.destroy()

There must be at most one control (normally a button) with an
<id> of “cancel”. If there’s one of them there can’t be one
with…

• "escapable": the control's <script_to_call> is executed if the dialog is exited
by any of the methods listed above.

There must be at most one control (normally a button) with an
<id> of “escapable” or with the <id> of “cancel”; one precludes
the other. Normally it would be hidden.

It's assumed the <script_to_call> will not destroy the dialog.

If you have a button with <id> of "escapable", you’ll probably
also want to set_response for the “close” <sys_command>
(otherwise stuff like <alt-F4> would not terminate the dialog.

<font_spec> Optional: The control’s font. See Section 11.9 "Fonts: the
and <font_spec> parameters"

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 44 of 260
page 44 of 260

<tooltip> Optional: Text of tooltip for the control. If absent, no tooltip. Not valid
for static controls. “\n” or “\r\n” can be used to force <tooltip> line breaks (or "/"
with the "slashisnl" style).

<tooltip_style> Optional: Only has an effect if <tooltip> is present and non-null.

<tooltip_style> =: [<width>] [<tooltip_styles>]

<width>, if specified, implies a multi-line tooltip of <width> dialog units;
<tooltip> will be word wrapped to fit within that <width>. You can alternatively
include the width:nn pseudostyle anywhere in <tooltip_styles> (see end of table
below).

<tooltip_styles> may contain any of the following names or letters, whitespace-
delimited:

ToolTip Styles

this style
name

or
this

letter
#define’d symbol means

always a TTS_ALWAYSTIP
With style, tooltip appears when the cursor is
on a tool, regardless of whether the dialog is
active or inactive. Without style, the toottip
appears only when the dialog is active.

balloon b TTS_BALLOON
tooltip has the appearance of a cartoon
"balloon," with rounded corners and a stem
pointing to the item

centre c TTF_CENTERTIP only valid for balloon style; changes where
the arrow goes

slashisnl - - interpret "/" as a newline

showafter:nn - -

nn (any number of digits) is length of time in
msec that the cursor must remain stationary
within the bounding rectangle of a tool before
the ToolTip window is displayed. –1 to
revert to default (system double click time)

stayopen:nn - -

nn (any number of digits) is length of time in
msec before the ToolTip window is hidden if
the cursor remains stationary in the tool’s
bounding rectangle after the ToolTip window
has appeared. –1 to revert to default
(forever)

width:nn - -
sets maximum width of tab. Use as
alternative to prefixing <tooltip_styles> with
<width>

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 45 of 260
page 45 of 260

<right_click_command>: Optional: If present, normally a command that causes
a PowerPro menu to appear, using e.g. menu.show or cl.ShowMenu, thus
simulating a context menu. The script will be run if dialog user right clicks on
the control. See Section 11.11: "<right_click_command>: Context Menus"

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 46 of 260
page 46 of 260

10.3 define_set
dialog.define_set(<dialog_handle> [, <name> [, <control_types>

[, <included_controls (and'ed)> [, <included_controls
(or'ed)> [, <excluded_controls>]]]])

<dialog_handle>.define_set([<name> [, <control_types>
[, <included_controls (and'ed)> [, <included_controls
(or'ed)> [, <excluded_controls>]]]])

aliases: none

Used in sample scripts dialogPluginDemo1.powerpro, and, to no great
purpose, regexDialog.powerpro.

Creates a set of controls, the handle or name of which can then itself be used
as an arguments or object of some other services.

Returns a handle to the set, which can be used as if it was a handle to a control.

A set should be created once and once only in a dialog script. It can be
accessed from multiple functions in the script by name or statically stored
handle.

<name> Optional: a name which can be used as the <ctrl_id> in calls to other
services.

At least one of <control_types>, <included_controls> and <excluded_controls>
must be a non-null string.

<control_types> Optional: a white-space separated list of control type names.
May be the null string. All controls of the specified types will be included in the
set.

<included_controls (and'ed)> Optional: A white-space separated list of control
names which must be included the set; a control is only included in the final set
if it is selected both by this list of control names and by the list of
<control_types>. Each name may include the wildcards "?", "*". If a name
doesn’t include wildcards and is not a valid control name, you'll get an error
message.

You may not include the name of a set in <included_controls (and'ed)>; sets, in
other words, can’t include other sets (though the same control can belong to
many sets).

If you include the same control twice (most probably because of overlapping
wildcard expressions), it will of course be included in the set only once.

Either <control_types> is the null string, <included_controls (and'ed)> has the
same effect as <included_controls (or'ed)>.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 47 of 260
page 47 of 260

If <control_types>, <included_controls (and'ed)> and <included_controls
(or'ed)> are all null strings, it's an error.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 48 of 260
page 48 of 260

 <included_controls (or'ed)> Optional: A white-space separated list of control
names which must be included the set; a control is included in the final set
regardless of what has already been selected by previous parameters. Each
name may include the wildcards "?", "*". If a name doesn’t include wildcards
and is not a valid control name, you'll get an error message.

In particular you can specify <included_controls (or'ed)> of "*", meaning all
controls; you would probably want to specify some <excluded_controls>.

<excluded_controls> Optional: A white-space separated list of control names
which must be excluded from the in the set. Each name may include the
wildcards "?", "*". If a name doesn’t include wildcards and is not a valid control
name, you'll get an error message.

Only the following services work with a set name or a handle to a set:

enable, show: The most likely suspects, so you can hide and show, or enable
and disable, sets of controls in response to user actions.

set_colour: Also may be quite handy, but perhaps not for the more complex
controls that need amusing special parameters, like the date pickers and month-
calendars.

set_value: Most likely to be useful with no <property> parameter and something
like the null string as an argument, for e.g. clearing a bunch of edit boxes or
statics. Not recommended for the more elaborate controls that need funny
parameters, like listviews or treeviews.

set_position: Only make sense if used with relative dimensions; other wise all
controls in the set will end up in the same place

change_style: If you use named styles, they'll have to be once that are legal for
all the types of controls included in the set.

set_font: Sets font for controls.

clear: Only applies to controls with multiple bits; probably only useful if you want
to use it without arguments, which for some types of controls (e.g. combo box
controls or list controls) means "empty it out".

send_message: Same story: a named message will have to be legal for all the
types of control in the set. It may be that you have to use a numeric message
code (possibly obtained from dialog-related defines.txt

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 49 of 260
page 49 of 260

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 50 of 260
page 50 of 260

10.4 make_ctrl_handle
dialog.make_ctrl_handle(<dialog_handle> , <ctrl_id>)
<dialog_handle>.make_ctrl_handle (<ctrl_id>)

alias: ctrl_handle

Used in sample scripts dialogPluginDemo1.powerpro,
dialogPluginDemo4.powerpro, dialogPluginDemo5.powerpro,
dialogPluginDemo6.powerpro, and all the regex scripts.

dialog.make_ctrl_handle returns a <handle_to_control> (a string beginning
"l\x05", followed by a hex number), which can only be used to refer to a specific
control in a dialog using the object.service syntax:

<handle_to_control>.service(….)

Such a <handle_to_control> would only be useful in situations where you need
to execute numerous services on the same control. This might occur for
instance for tab controls, and treeview controls, both of which usually require
numerous calls to set_value to configure.

Other service calls cannot be chained to make_ctrl_handle .

Unlike handles to dialogs, <handle_to_control>s stored in local variables are
automatically deleted when the local goes out of scope. They are not
automatically destroyed when the dialog which contains the control in question
is destroyed. In fact, they don’t need to be destroyed at all, as no special
memory is associated with them, so <handle_to_control>s stored in static or
global variables don’t need to be deleted using the destroy service (although it
does no harm to do so), and <handle_to_control>s passed as arguments don't
really need to be localcopy'd (although it does no harm to do so).

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 51 of 260
page 51 of 260

10.5 create
dialog.create(<dialog_handle> [,<modal_mode> [, <owner>]])
<dialog_handle>.create([<modal_mode> [, <owner>]])
dialog.create(<dialog_definition_file> [,<modal_mode> [, <owner>]])

Used in all sample scripts.

dialog.create causes either:

first form: a dialog that's been defined and presumably populated with
controls come into existence.

second form: creates a dialog from a <dialog_definition_file>, returning a
handle to the newly created dialog. This form returns the handle to the
newly created dialog.

In neither case does the dialog show up on screen or start executing as a
window.

dialog.create is useful if you want to fiddle with properties of controls before the
dialog comes into existence; you may want to disable them, or hide them, for
instance. It's particularly useful for modal dialogs, which would be impossible to
initialise once running.

Other service calls cannot be chained to create.

The arguments:

<dialog_handle> either this or <dialog_definition_file> required: A handle
returned by dialog.define. See Section 11.1 "Handles to Dialogs and the
<dialog_handle> parameter".

<dialog_definition_file> either this or <dialog_handle> required: The path to a
file that defines a dialog and its controls. See Section 11.2 "The
<dialog_definition_file> Parameter and the Format of a Definition File".

<modal_mode> Optional:

0: create a modeless dialog: the default option if <modal_mode> omitted

1: create a modal dialog that stops the creating script from running until
the dialog completes.

2: create a modal dialog that stops all PowerPro activity until the dialog
completes: bars won't responds, the debug window won’t display,
timers probably stop.

 <owner> Optional: a <dialog_handle> for the a dialog created with this plugin;
or a handle to any window. Only relevant for a modal dialog. If you provide an
<owner> <dialog_handle>, the calling (owner) dialog or window will be disabled

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 52 of 260
page 52 of 260

until the dialog it creates is closed. If you are displaying a modal dialog from
another modal dialog, it is essential to pass the correct <dialog_handle> as the
owner for the second dialog. Bad Things will happen otherwise.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 53 of 260
page 53 of 260

10.6 run
dialog.run(<dialog_handle> [, <show_type> [, <modal_mode> [,

<owner>]]])

<dialog_handle>.run([<show_type> [, <modal_mode> [, <owner>]]])

dialog.run(<dialog_definition_file> [, <show_type> [, <modal_mode> [,
<owner>]]])

Used in all sample scripts.

dialog.run causes either:

first form: a dialog that's been defined and presumably populated with
controls to actually run. It will also run a dialog that's already been created.

second form: creates a dialog from a <dialog_definition_file> and runs it,
returning a handle to the newly created dialog. This form returns the handle
to the running dialog if its non-modal.

Other service calls cannot be chained to run.

Both forms return the value supplied to dialog.destroy_window if running a
modal dialog.

The arguments:

<dialog_handle> (either this or <dialog_definition_file> is required): A handle
returned by dialog.define. See Section 11.1 "Handles to Dialogs and the
<dialog_handle> parameter".

<dialog_definition_file> (either this or <dialog_handle> is required): The path to
a file that defines a dialog and its controls. See Section 11.2 "The
<dialog_definition_file> Parameter and the Format of a Definition File".

<show_type> Optional: if present and non-null, may be any of the values
appropriate as arguments of the show service appropriate for a dialog.

<modal_mode> Optional: Same meaning as for the create service (0 or absent
for modeless, 1 for modal, etc). If present, and you're running a previously
created dialog; and this value's not the same as the <modal_mode> used in that
invocation of the create service, you'll get an error message. I’d strongly
suggest that if you’re invoking dialog.run after a dialog.create, you omit this
parameter. It’s only there for situations where you’re running dialog.run without
previous invoking create.

 <owner> Optional: a <dialog_handle> a <dialog_handle> for the a dialog
created with this plugin; or a handle to any window. Only relevant for a modal

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 54 of 260
page 54 of 260

dialog, which will cause the owner dialog or window to be disabled until it's
closed. If present, and you're running a previously created dialog; and this
value's not the same as the <owner> used in that invocation of that create
service, you'll get an error message. I’d strongly suggest that if you’re invoking
dialog.run after a dialog.create, you omit this parameter. It’s only there for
situations where you’re running dialog.run without previous invoking create.

If you are displaying a modal dialog from another modal dialog, it is essential to
pass the correct <dialog_handle> as the owner for the second dialog. Bad
Things will happen otherwise.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 55 of 260
page 55 of 260

10.7 show
dialog.show(<target> [, <show_type>])
<dialog_handle>.show([<target>] [, <show_type>])
<ctrl_handle>.show([<show_type>])

dialog.show(<dialog_handle>, "traymin" | "trayicon", [, <script_to_call> [,
<command_arg> [, <mouse_action>]]])

<dialog_handle>.show("traymin" | "trayicon", [, <script_to_call> [,
<command_arg> [, <mouse_action> [,<icon_path> [, <icon_number>]]]]])

Used in all sample scripts.

dialog.show() changes it’s running display's state; or shows or hides a control.

You must only invoke show after a dialog is created or run.

If applied to a control (not to the dialog as a whole), you can chain other service
calls to show calls.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If using <dialog_handle>, <ctrl_id>,
<ctrl_id> may be 0 or absent, indicating you wish to change the show status of
the dialog itself. If <ctrl_id> is a control tab, all controls associated with the
currently selected tab will be hidden if you're hiding the control, made visible
otherwise.

If <show_type> is absent, it's taken to be SW_SHOW if <target> is a control, or
SW_NORMAL if <target> is a dialog handle.

For dialog and controls, <show_type> may be any of the following:

<show_type> values for dialogs and controls

this name
or

this
letter

#define’d symbol

show s SW_SHOW

1 1 SW_SHOW

hide h SW_HIDE

0 0 SW_HIDE

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 56 of 260
page 56 of 260

If your <target> is a dialog, not a control, <show_type> may also be:

<show_type> values for dialogs only

this name
or

this
letter

#define’d symbol

restore r SW_RESTORE

minimize i SW_MINIMIZE

maximize x SW_MAXIMIZE

normal n SW_NORMAL

foreground f calls
SetForegroundWindow

trayicon - show dialog icon in tray

traymin - show icon in tray and
hide dialog

traydel - remove tray icon

You can use set_tooltip to set a tooltip on the tray icon.

There are other SW_ messages you can use as <show_type>: see dialog-
related_defines.txt. If you want to use them, copy the variable
declaration/assignment you want from there to your script, and use that variable
as <show_type>.

Be careful: there's ambiguity of the show service has two arguments: In that
case, if the second argument is 1 or 0, that's taken as showing or hiding the
dialog; if it's a <show_type> name in the above table (e.g. "hide" or "show", but
there's a control with that control id, it's taken as showing that control, not as
applying that <show_type> to the dialog as a whole.

<script_to_call> Optional, only applies for <show_type>s: A PowerPro
command to execute if an interesting event is fired by the control. See Section
11.5 “Script Calls and Their Arguments”. If absent or the null string, clicking on
the tray icon for the dialog will cause the dialog to show in the foreground..

<command_arg> Optional: An argument passed to the above command if it’s
invoked. If present, the <script_to_call> must not be the null string. See
Section 11.5 “Script Calls and Their Arguments”.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 57 of 260
page 57 of 260

<icon_path>, <icon_number> Optional: Icon you want to use show in the tray.
For details see Section 11.8 “Icons: the <icon_path>, <path_to_image> and
<icon_number> parameters”. If you omit <icon_path> and <icon_number>, the
icon associated with the dialog via the equivalent arguments of dialog.define, or
your most recent call to set_icon.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 58 of 260
page 58 of 260

10.8 enable
dialog.enable(<target> [, <enable_or_not>])

Used in sample scripts dialogPluginDemo1.powerpro,
dialogPluginDemoFromConfigFile.powerpro and all the regex scripts.

dialog.enable() enables or disables a control.

You must only invoke enable after a dialog is created or run.

If applied to a control (not to the dialog as a whole), you can chain other service
to enable calls.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If using <dialog_handle>, <ctrl_id>,
<ctrl_id> may be 0 or absent, indicating you wish to enable or disable the dialog
itself. If <ctrl_id> is a control tab, all controls associated with all tabs will be
enabled or disabled as well.

<enable_or_not> Optional: 0 to disable, 1 to enable, if omitted taken as 1
(enable).

10.9 set_focus
dialog.set_focus(<target>)

alias: focus

Used in sample scripts dialogPluginDemo1.powerpro, regexDialog.powerpro
and regexDialogScintilla.powerpro.

dialog.set_focus() causes focus to switch to a particular control.

You must only invoke set_focus after a dialog is created or run.

If applied to a control (not to the dialog as a whole), you can chain other service
calls to set_focus calls.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If using <dialog_handle>, <ctrl_id>,
<ctrl_id> may be 0 or absent, indicating you wish to set focus to the dialog itself.
Doesn't work with a <window_ handle_ to_ remote_ control> <target>.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 59 of 260
page 59 of 260

10.10 get_value
dialog.get_value(<target> [, <property>])
dialog.get_value(<dialog_handle> [, "font" | "hwnd" | "prevctrl” | partno])
<dialog_handle>.get(["font" | "hwnd" | "prevctrl" | partno])
<dialog_handle>.get_value(<target> [, <property>])
<dialog_handle>.get(<target> [, <property>])
x = <dialog_handle>[<target> [, <property>]]
dialog.get_value(<window_handle> [, "font"])

alias: get

Used in the regex sample scripts.

dialog.get_value() gets the some value from a control or the dialog. What that
means depends on the type of control:

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 60 of 260
page 60 of 260

if invoked on: you get:

the dialog it's caption

button label on button

check box
radio button
three-state

0 if unchecked, 1 if checked/selected, 2 if
indeterminate. If <property> begins with “text”,
gets the control’s text instead

static text in static

editbox
scintilla

get text in box or it's font; scintilla has small
variation in get_value with a <property> of "font".
A <property> of "select" will get selected text;
“selectlen” will return how long it is.

richedit fetch either plain or rtf text in box. details

combo box a little complicated. details

list box a little complicated. details

date-time
date selected, in format yyyymmdd; if nothing
selected (0nly possible if control has
“shownone” style), 0

month-
calendar

date selected, in format yyyymmdd; if control
has the “multiselect” style, you get two dates
back, separated by a space, represented the
selected range

scrollbar
spinner
progress
slider

the control position

statusbar text in part partno

treeview complicated. details

listview complicated. details

You can't chain service calls to get_value.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If using <dialog_handle>, <ctrl_id>,
<ctrl_id> may be 0 or absent, indicating you wish to get the dialog's title. If

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 61 of 260
page 61 of 260

<ctrl_id> is a control tab, all controls associated with all tabs will be enabled or
disabled as well.

Be careful; if you have a control named "font" and use it as <ctrl_id>, it will be
interpreted as querying the font of the dialog as a whole, not getting the value of
the "font" control.

You can only invoke get_value taking a <dialog_handle> and a <target> after a
dialog is created or run.

<property> Optional:

value applies to returns

dialog control hwnd

tool FALSE TRUE FALSE gets tooltip text

font TRUE TRUE TRUE

returns a font description, in the format used by set_font:
see Section 11.9 "Fonts: the and <font_spec>
parameters". If <target> is an hwnd and a handle to a
control, works; if a handle to most other kind of windows,
probably doesn’t (because most windows procedures
don’t respond to the WM_GETFONT message).

fonth
fonthandle TRUE TRUE TRUE returns the HFONT associated with the <target>; for hwnd

<target> see above

hwnd TRUE TRUE FALSE returns the window handle for control; 0 if dialog not
created yet

id FALSE TRUE FALSE returns control number

type FALSE TRUE FALSE returns the type of control

name FALSE TRUE FALSE returns name, if any, assigned to control in call to
define_control

prevctrl TRUE FALSE FALSE

returns a handle to the control that was last used (had
keystroke entry) before one whose <script_to_call> is
currently executing, or the null string if no control has
focus. statics, scrollbars, progress bars, and status bars
don’t count as “previously used”.

owner TRUE TRUE TRUE
returns a handle to the owning dialog. No allowed if
applied to a non-modal dialog not launched by another
dialog

Other values are valid for specific control types; see descriptions of set_value
for each control type in appendices.

The <dialog_handle>[<ctrl_id>, <property>] syntax works nicely; so does
<dialog_handle>[<property>] and <control_handle>[<property>].

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 62 of 260
page 62 of 260

10.11 set_value

dialog.set_value(<target>, <text>
[, <pos> | <property>| <date2> | <tab control stuff>])

dialog.set_value(<target>, <pos>, <<text>) (for statusbar parts)
dialog.set_value(<dialog_handle>, <text>)
<dialog_handle>.set_value(<ctrl_id>, <text>

[, <pos> | <property>| <date2> | <tab control stuff>])
<dialog_handle>.set_value(<pos>, <<text>) (for statusbar parts)
<dialog_handle>.set_value(<text>)
<dialog_handle>[<ctrl_id>] = <text>
dialog.set_value(<window_handle_to_control>, ….)

aliases: set, modify, add

Used in all (?) sample scripts. dialogPluginDemo1.powerpro uses the
<dialog_handle>.set_value(<text>) form.
dialogPluginDemoNonNative.powerpro uses set services to modify controls
in dialogs not produced by the dialog plugin.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 63 of 260
page 63 of 260

dialog.set_value() sets the a value of a control or the caption of a dialog, as
follows:

if
invoked

on:

you set:

the
dialog It's caption. <pos>/<property> is ignored.

button
 Label on button. <pos>/<property> is ignored.

check
box
radio
button

Sets the control’s state: 0 to set to unchecked, 1 to checked/selected, 2 to indeterminate. If
<property> begins with “text”, gets the control’s text instead. You can also change the state
of a check box or radio button with the setcheck message.

static Text in static. <pos>/<property> is ignored.

editbox
scintilla get text in box.

richedit set either plain or rtf text. details

combo
box

If <pos> is absent, sets what's in the edit box.
If <pos> is "add", adds item(s) to list (at end unless listbox has "sort" style, otherwise in
appropriate sort order). If <pos> is numeric (lowest legal value 0 or 1), item(s) are inserted
at <pos> (if <pos> is –1, item(s) added at end; the "sort" style never applies). You can add
or insert multiple items at once by separating them with newlines ("\n"). Returns the index
(lowest legal value 0 or 1) of the position at which the last item was inserted or added., or –1
if there was an error.

list box

If <pos> is absent or "add", adds item(s) to list (at end unless listbox has "sort" style,
otherwise in appropriate sort order). If <pos> is numeric (lowest legal value 0 or 1), item(s)
are inserted at <pos> (if <pos> is –1, item(s) added at end; the "sort" style never applies).
You can add or insert multiple items at once by separating them with newlines ("\n").
Returns the index (lowest legal value 0 or 1) of the position at which the last item was
inserted or added., or –1 if there was an error.

date-time The selected date; you must provide <text> in format yyyymmdd; if <text> is the null string,
clears selection. <pos>/<property> is ignored.

month-
calendar

if control has "multiselect" style: you must provide <text> as first date, <date2> as second,
both in format yyyymmdd

if not: the selected date; you must provide <text> in format yyyymmdd. <pos>/<property> is
ignored.

scrollbar,
spinner
progress
slider

The control position. <pos>/<property> is ignored.

statusbar Text of all or part of a statusbar. see details.

tab
control Complicated; see details.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 64 of 260
page 64 of 260

if
invoked

on:

you set:

treeview Complicated; see details.

listview Oh, so complicated. see details

depending on last call to set_base, or, failing that, on value of the configuration ini file
(dialog.ini or plugins,.ini) key indexBase; or, failing either, 1

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 65 of 260
page 65 of 260

If applied to a control (not to the dialog as a whole), you can usually chain other
service calls to set_value calls; the exception is when used with the "add"
subcommand on TreeView controls.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If using the <dialog_handle>, <ctrl_id>
option, <ctrl_id> may be 0 or absent, indicating you wish to set the title of the
dialog itself.

You must only invoke set_value taking a <dialog_handle> and a <ctrl_id> after
a dialog is created or run.

<pos> | <property>| <date2> Optional: as specified for a specific control, above

Note the <dialog_handle>[<target>] = <text> syntax doesn’t support the
<pos> | <property>| <date2> parameter.

10.12 clear
dialog.clear(<target> [, <item>])
<dialog_handle>.clear(<ctrl_id> [, <item>])
dialog.clear(<hfont>, “hfont”)

alias: remove

Used in sample scripts dialogPluginDemo5.powerpro and
dialogPluginDemo6.powerpro.

dialog.clear() removes tabs from tab controls; nodes from tree view controls;
rows or columns from list views; and lines of text from combo box controls or list
controls. Go to appropriate link to he control you want to use for further details.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". <ctrl_id> must be an id of one of the above
control types. Doesn't work with a <window_ handle_ to_ remote_ control>
<target>.

If applied to a control, you can chain other service calls to clear calls.

If first argument is an HFONT returned by set_font, deletes the font resource
associated with it.

If you try to delete an item that doesn't exist, you'll get an error message.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 66 of 260
page 66 of 260

10.13 set_tooltip
alias: tooltip

Used in sample script dialogPluginDemo1.powerpro.

There are three kinds of tooltips;

• ones that appear when you hover a mouse over a control

• ones that appear when you hover a mouse over a tray icon associated with
a dialog

• ones that appear in bubble form from a tray icon associated with a dialog
when you request them.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 67 of 260
page 67 of 260

10.13.1 set_tooltip for controls

For a control tooltip:

dialog.set_tooltip(<ctrl_id> [, <tooltip_text> [, <tooltip_style> [,
[, <script_to_call> [, <command_arg> [,
<foreground_colour> [, <background_colour> [,<delay> [,
<title> [, <icon>]]]]]]]]]])

<dialog_handle>.set_tooltip([<ctrl_id>][,<tooltip_text>
[, <tooltip_style> [, [, <script_to_call>
[, <command_arg> [, <foreground_colour>
[, <background_colour> [,<delay> [,<title>
[,<icon>]]]]]]]]]])

ctrl_handle.set_tooltip([<tooltip_text> [, <tooltip_style> [,
[, <script_to_call> [, <command_arg>
[, <foreground_colour > [, <background_colour >
[, <delay> [, <title> [, <icon>]]]]]]]]])

NB Tooltips don’t work in XP if the powerpro manifest file
(powerpro.exe.manifest) isn’t present. Will try and fix.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows".

If <target> is the dialog as a whole, the tooltip applies to the dialog as a whole;
for now, in that case, only <tooltip_text> is processed.

Doesn't work with a <target> of type <window_ handle_ to_ remote_ control> .

If all arguments after <ctrl_id> are absent (or no arguments provided for
ctrl_handle.set_tooltip form) the tooltip is removed.

<tooltip_text> Optional: Tooltip’s text. Sets or changes text if not the null string.
“\n” or “\r\n” can be used to force <tooltip> line breaks (or "/" with the "slashisnl"
style)

<tooltip_style> Optional: Determines behaviour and appearance of tooltip. May
contain any of the names or letters, whitespace-delimited specified in the table
of tooltip_styles.

If <tooltip_text> is the null string but there are <tooltip_style>s, tooltip text will
remain the same but tooltip styles will change.

 Optional: Only applies for control tooltips. Sets tooltip’s font (which you
can also do using the set_font service with the <tooltip> argument appropiately
set).

<script_to_call> Optional: Only applies for control tooltips. A PowerPro
command to execute just before a tooltip displays. See Section 11.5 “Script
Calls and Their Arguments”.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 68 of 260
page 68 of 260

<command_arg> Optional: Only applies for control tooltips. An argument
passed to the above command if it’s invoked. If present, <script_to_call> must
not be the null string. See Section 11.5 “Script Calls and Their Arguments”

<foreground_colour>, <background_colour> Optional: Only applies for control
tooltips. See Section 11.7 “Colours”. If XP visual styles are in force (because
there’s a powerpro.manifest file in your PowerPro installation folder) these
parameters don’t work.

<delay> Optional: in milliseconds, sets initial (i.e. same as "showafter" pseudo-
style), and autohide (i.e. "stayopen" pseudo-style, set to ten times the initial
time) durations of tooltip. If you specify –1, all delays are returned to defaults
(double click time for initial, infinite for autohide). If you specify delays
"stayopen" or "showafter" pseudo-styles as well as a <delay>, the <delay>
applies first, then overridden with the specific "stayopen" or "showafter" values.

<title> Optional: Only for balloon tooltips. The title above the main text.

<icon> Optional: Only for balloon tooltips. See below.

NB: A bug, Only if (a) you activate XP Visual Styles for powerpro by having the
powerpro.exe.manifest in your PowerPro installation folder (the file as installed
has ".unused" appended; to activate it you have to remove the appendage),
and (b) you execute set_tooltip after you invoke created or run, the tooltip may
leave a shadow on screen until it's clicked. I’m working on it. Workaround: call
set_tooltip before create, or don’t use the manifest.

You can invoke set_tooltip for a control at any time.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 69 of 260
page 69 of 260

10.13.2 set_tooltip for dialogs

dialog.set_tooltip(<dialog_handle> [, <tooltip_text> [, <title>, [<icon> ,
[<delay>]]]])

<dialog_handle>.set_tooltip([<tooltip_text>, [<title>, [<icon> ,
[<delay>]]]])

If all arguments after <dialog_handle> are absent (or no arguments provided for
<dialog_handle> form) the tooltip is removed.

You can create two kinds of tooltip for the tray icon using.

• If you want a standard tooltip that shows whenever you hover your
mouse over the tray icon, use only <tooltip_text>.

• If you want to display a bubble notification tooltip originating from the
tray icon, you must include at least <title> parameter, even if it's the null
string.

You have both types of tooltip for the same dialog.

<tooltip_text> Optional: Tooltip’s text. Sets or changes text if not the null string.

If <tooltip_text> is the last argument supplied, assumption is you want to have
that text as an ordinary rectangular tooltip that appears when you hover over a
tray icon. If you haven’t yet created a tray icon with call to the show service
using the traymin or trayicon <show_type>s, a tray icon will be created using the
dialog's icon.

<title> Optional: Only applies to balloon tooltips. Must be no longer than 99
characters; The title above tooltip text.

<icon> Optional: Only applies to balloon tooltips.

<icon> := <icon_type> | (<icon_path> [, <icon_number>])

<icon_type> can be one of “info”, “warning” or “error”.

<icon_path> and <icon_number> Optional: Specify an icon to use in the
balloon. Only works for XP SP2 or later.. For details see Section 11.8
“Icons: the <icon_path>, <path_to_image> and <icon_number>
parameters”.

<delay> Optional: Only applies to balloon tooltips. Delay (in msec) after which
the bubble tip will be closed.

Other service calls can be chained to set_tooltip calls.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 70 of 260
page 70 of 260

10.14 set_range

dialog.set_range(<target>, <min>, <max> [,<other_thing>])
ctrl_handle.
<dialog_handle>.

alias: range

Used in sample scripts dialogPluginDemo1.powerpro,
dialogPluginDemo2.powerpro, dialogPluginDemo4.powerpro,
dialogPluginDemoFromConfigFile.powerpro

dialog.set_range() sets properties of a scrollbar, spinner, progress, or slider
control .

You must only invoke set_range after a dialog is created or run.

Other service calls can be chained to set_range calls.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If using the <dialog_handle>, <ctrl_id>
option, <ctrl_id> must be of a ontrol of one of the above types.

<min> Required: Value associated with the left or bottom end of a control.
Defaults to 0. If <min> is specified, <max> must be also.

<max> Required: Value associated with the right or top end of a control.
Defaults to 99.

<other_thing> Optional:

• For a scrollbar or slider <page_size>:The quantity determining the thickness
of the scrollbar or slider thumb, classically the size of a page in a document.
Defaults to 1. Should be in the range 0 to <max> - <min> +1.

• For a spinner: ignored

• For a progress bar: <step> The amount the bar moves when told to step.
Defaults to 10 if omitted.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 71 of 260
page 71 of 260

10.15 set_colour
dialog.set_colour(<target> [, "tooltip" | "tool" | "tip"][, <foreground> [,

<background>]])

<dialog_handle>.set_colour([<ctrl_id>] [, "tooltip" | "tool" | "tip"][,
<foreground> [, <background>]])

ctrl_handle.set_colour([, "tooltip" | "tool" | "tip"][, <foreground> [,
<background>]])

dialog.set_colour(<target>, <mouse_state> [, <colour>]])
<dialog_handle>.set_colour([<ctrl_id>], <mouse_state> [, <colour>]])
ctrl_handle.set_colour(<mouse_state> [, <colour>]])

alias: colour, set_colours

Used in sample scripts dialogPluginDemo1.powerpro,
dialogPluginDemo2.powerpro, dialogPluginDemo4.powerpro,
dialogPluginDemo5.powerpro, dialogPluginDemo6.powerpro,
dialogPluginDemo7.powerpro and dialogPluginDemoFromConfigFile.powerpro.
dialogPluginDemo2.powerpro and dialogPluginDemo7.powerpro illustrate use of
mouse state keywords

Use dialog.set_colour() to change foreground and/or background colours of a
control or dialog.

You can invoke set_colour before or after a dialog is created or run, , though I'm
not sure why you'd want to do the former.

Other service calls can be chained to set_colour if it applies to a control (as
opposed to the dialog as a whole).

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If using <dialog_handle>, <ctrl_id>,
<ctrl_id> may be 0 or absent, indicating you wish to change the colours of the
dialog itself.

If <target> specifies a tab control, animation or spinner or activeX control,
set_colour has no effect. In the latter case, the COM control you've embedded
may have a method for dealing with colour.

If <target> specifies a static, and a <mouse_state> is specified, the control has
to have the "notify" (SS_NOTIFY) style, so that's automatically applied if you
specify a <mouse_state>. Example in dialogPluginDemo7.powerpro.

"tooltip" | "tool" | "tip" Optional: only applies if <target> is a control; in which
case you'll be altering the colour of a tooltip, which must already exist (i.e. have
been created via a call to define_control or set_tooltip). But if XP visual styles
are in force (because there’s a powerpro.manifest file in your PowerPro

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 72 of 260
page 72 of 260

installation folder) you can’t change a tooltip’s colours, so these options won’t
work.

<foreground> Optional: The text colour. If absent or the null string, colour
reverts to standard system colour. If "default" or the empty string, becomes
default text colour for the type of control. See Section 11.7 “Colours”. Ignored if
target is 0, i.e. the dialog itself. For date picker, month-calendar, treeview and
listview controls, this parameter can be interpreted as the part of the control you
wish to colour. Has no effect on scrollbar controls.

<background> Optional: The background colour. If absent or the null string,
colour reverts to standard system colour. If "default" or the empty string,
becomes default background colour for the type of control.. See Section 11.7
“Colours”. For date picker, month-calendar, treeview and listview controls, this
parameter can become the one colour you wish to set part of the control to.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 73 of 260
page 73 of 260

<mouse_state> Optional: Sets a colour for a control dependent on what the
mouse is doing with it. Must contain one of:

Must contain one of: and may contain one of

this
keyword

or this
letter

applies when
control

this
keyword

or
this

letter
means

pressed p has mouse press
down

back b background
colour

focus
focused c has focus fore f foreground colour

hover
hovering h has mouse over

If a colour is defined when a mouse is hovering over a control, it takes
precedence over one defined for the control having focus.

If neither "fore" nor "back" are specified, "back" is assumed.

Not all <mouse_state>s work on all controls:

scrollbar controls used as pseudo spinners won't show any effects, because there is no
"foreground" and the background is usually hidden

datetime controls don’t seem to respond to anything but "press" events; might be better
with the "updown" style.

combobox controls react oddly to focus events

statusbars don’t do foreground colours; tab controls and spinners don’t do colours at
all; can’t get scintilla controls to do control-wide colouring; activex is a container,
container must respond to mouse movement; groups don’t receive mouse events.

statics have to have the "notify" (SS_NOTIFY) style, to respond to mouse presses, so
that's automatically applied if you specify a <mouse_state>.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 74 of 260
page 74 of 260

10.16 rgb

dialog.rgb(<red_value>, <green_value>, <blue_value>)

Used in sample scripts dialogPluginDemo1.powerpro,
dialogPluginDemo2.powerpro, dialogPluginDemo4.powerpro,
dialogPluginDemo5.powerpro, dialogPluginDemo6.powerpro and the regex
scripts.

dialog.rgb() can be used to generate an a value for the <foreground> or
<background> parameters. of set_colour or define_control. The arguments
must be in the range 0-255.

You can invoke rgb at any time.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 75 of 260
page 75 of 260

10.17 set_image

Use dialog.set_image() to set an image for a static control, button, or tab
control:

for a static control:

dialog.set_image(<target> [, <path_to_image>
 [, <icon_number>]])

for a tab control:

dialog.set_image(<target> [, <path_to_image1>
[, <icon_number>]…[,<path_to_imageN>
[, <icon_numberN>]]])

for a button:

dialog.set_image(<target> [, <path_to_image>
[, <icon_number>] [,…<path_to_pressed_image>
[, <icon_number>]]])

aliases: set_images, images, image, images

Used in sample scripts dialogPluginDemo1.powerpro,
dialogPluginDemo2.powerpro, dialogPluginDemo4.powerpro,
dialogPluginDemo7.powerpro (settings images for buttons) and
dialogPluginDemoFromConfigFile.powerpro.

You must only invoke set_image after a dialog is created or run. I've found
some kind of glitch: if you invoke set_image when a dialog is running in
foreground, the dialog loses focus. If appropriate, might be better for now to run
set_image after a create and before a run.

Other service calls can be chained to set_image calls.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". You must use the <dialog_handle>,
<ctrl_id>, form, and <ctrl_id> must be a control id (see Section 11.3 "Control
Ids") for a static control or tab control.

<path_to_image> Required: May be a path to an file containing an icon (.dll,
.ico, .icl, .scr, .cpl or .exe); or a .bmp, .gif, .wmf, .emf .jpeg/jpg or .cur file. If not
an absolute path, taken to be relative to the location of the current configuration
file (the folder returned by pprofolder). If the null string, treated as specifying
PowerPro.icl in the same folder as PowerPro.exe. If none of the above and

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 76 of 260
page 76 of 260

one of the keywords listed in Section 11.8 “Icons: the <icon_path>,
<path_to_image> and <icon_number> parameters”, a system icon will be used.

For all types of controls, if you invoke set_image with no arguments it will
remove all images from the control in question.

<icon_number> Optional: The icon within the file <path_to_image> to use; base
depends on last call to set_base, or, failing that, on value of the configuration ini file
(dialog.ini or plugins,.ini) key indexBase; or, failing either, 1. Ignored if
<path_to_image> is neither the null string nor a path to a .dll, .icl, or .exe. If
omitted or the null string, taken to be lowest possible current base value.

static controls:

Images will be automatically resized to fit the static control.

There's a useful centreimage style for your target.

I haven’t figured out how to erase an image once it’s drawn in a static control.

tab controls:

set_images can be used to add images to the collection of images available to
be placed on tabs within the tab control. In any one call to set_images you can
specify as many <path_to_image>s (and intervening <icon_number>s) as you
can fit into the 23 allowed parameters for a service call. You can call
set_images for the same tab control as many times as you want, adding more
and more images to the control's image set.

buttons:

set_images can be used to set images for a button, to the collection of images
available to be placed on tabs within the button. In any one call to set_image
you can specify one or two <path_to_image>s (and optional <icon_number>s);
the second image, if present, applies when the button is pressed. If you omit
the second image, the one specified image is used no mater the button’s state.

Calling set_image with a null string will stop an image being used in the
relevant button state.

There are special "styles" that determine how image and text are displayed on a
button. If the text and image can’t both be fit on a button given it's image styles,
the image will be shrunk to fit. For now, I don’t attempt to resize the image
when you resize the dialog.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 77 of 260
page 77 of 260

10.18 set_response
dialog.set_response(<target> [, <script_to_call> [, <command_arg>

[, <events> | <mouse_event> | <sys_command> | “tray” |
“trayicon”]]])

dlg_handle.set_response([<ctrl_id>,][<script_to_call> [, <command_arg>
[, <events> | <mouse_event> | <sys_command> |
“tray” | “trayicon”]]])

ctrl_handle.set_response([<script_to_call> [, <command_arg>
[, <events> | <mouse_event>]]])

aliases: response

Used in sample scripts dialogPluginDemo1.powerpro, regexDialog.powerpro
and regexDialogScintilla.powerpro

Use dialog.set_response() to change which command is executed when a
control receives a notification; what argument to pass with that command when
the notification occurs; and which notifications (sub-messages of the
WM_COMMAND command) trigger that command.

You may invoke set_response even before a dialog is created or run.

Other service calls can be chained to set_response.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". You must use the the <dialog_handle>,
<ctrl_id> form; <ctrl_id> may be absent or 0, indicating you wish to modify the
responses of the dialog itself.

If the <target> is a scintilla, rich text edit or plain edit control, the bad news is
that a “right” <mouse_event> will prevent the standard edit context menu
(“Undo”, “Copy”, “Cut”,…) from appearing (but a “right” <mouse_event> with a
keyboard modifier like “ctrl” won’t suppress it). The good news is that you can
pinch a replacement menu that does much the same defined as part of the
makeFormatMenu function of regexDialog.powerpro and
regexDialogScintilla.powerpro.

If the <target> is a static, <mouse_event>s will be ignored unless the control
has the "notify" (SS_NOTIFY) style, so that's automatically applied if you specify
a <mouse_event>.

If <ctrl_id> specifies an activeX control, set_response will have no effect
(because all events occurring within an activeX control happen within the COM
event framework, in front of which dialog plugin goes all shy .

<script_to_call> Optional: A PowerPro command to execute if an interesting
event is fired by the control. See Section 11.5 “Script Calls and Their

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 78 of 260
page 78 of 260

Arguments”. If absent or the null string, the control or dialog will cease to have
a script to execute and will therefore never respond to notifications.

<command_arg> Optional: An argument passed to the above command if it’s
invoked. If present, the <script_to_call> must not be the null string. See
Section 11.5 “Script Calls and Their Arguments”. If absent or the null string, the
control or dialog won't pass an argument to <script_to_call> .

<events> Optional: A list of notifications (in numerical form) accompanying a
WM COMMAND or WM_NOTIFY message that may cause <script_to_call> to
be executed. See Section 11.6 “Specifying Which Messages Are Responded
To”. If absent or the null string: For a control: the control won’t have its own
notification list, and will therefore begin to use the dialog's notification list, if
there is one, or, if not, the default notification for the control class. For a dialog:
removes the dialog's notification list.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 79 of 260
page 79 of 260

<mouse_event> Optional: Instead of specifying notifications accompanying
messages, you can specify any one of the following mouse button identifiers,
and optionally, and separated from it by white space, a keyboard modifier:

which mouse
button

keyboard
modifier
(either)

keyboard
modifier (left) keyboard

modifier (right)

name or
letter

name or letter name name

left l ctrl c lctrl
leftctrl

rctrl
rightctrl

middle * m shift s lshift
leftshift

rshift
rightshift

right r alt * a lalt
leftalt *

ralt
rightalt *

mouse4 *

mouse5 *

* alt doesn't work for me; might be something odd about how alt keypress is
dealt with in a dialog, as it's involved in shortcut key recognition

I wouldn't use "left" on it's own, without modifiers: that's the same as specifying
the normal left-click action that most controls respond to. I'd use the numeric
value of the usual notification (BN_CLICK, for instance, for buttons).

Two other keywords are possible:

enter response taken when mouse enters control's window

exit response taken when mouse leaves control's window

The most obvious use the with a <mouse_event> is to trigger context menus.
However, those don’t work for controls that have their own built-in context
menus (as as as I can find out, that's editboxes and monthcal controls). For
them, even a response to "right" with a keyboard modifier doesn’t happen, even
if the response doesn’t involve a menu. But "middle" (with or without modifiers)
works fine for such controls. I can probably bypass this limitation by
subclassing the control types in question, but not sure it's that important.

You can define multiple <mouse_event>s for the same control or dialog, as well
as a response to notification <events>.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 80 of 260
page 80 of 260

If you call with a combination of <target> and <mouse_event> that's already
been used in a previous call, <script_to_call> and <command_arg> replace the
values specified in that previous call. If both parameters are the null string, the
response <target> and <mouse_event> ceases.

For statics, if you want a static to respond to <mouse_event>s, it's got to have
the notify (SS_NOTIFY) style, so that's automatically added to any static you
apply a set_response with a <mouse_event> to.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 81 of 260
page 81 of 260

<sys_command>: only valid if your <target> is a handle to a dialog, can be any
of the following keywords, corresponding to user actions on the dialog:

keyword WM_SYSCOMMAND
wParam remarks

close SC_CLOSE user hits alt-F4, or the “X” box in title
bar, or “Close” option in system menu

size SC_SIZE user changes size of dialog using sys
menu or border

move SC_MOVE
user moves dialog using sys menu or
title bar; used in
dialogPluginDemo2.powerpro

minimize SC_MINIMIZE user minimises;
used in dialogPluginDemo2.powerpro

maximize SC_MAXIMIZE user maximises

restore SC_RESTORE user restores

default SC_DEFAULT use double clicks on title bar

If you want most of these responses to be possible, you’ll of course have to
define your dialog with the appropriate styles so that it has e.g. a system menu
("sysmenu"), or a minimize box (“minbox"), or a resizeable.border
("thickframe").

If there’s no “close” response set, if user closes by any of the methods listed,
action associated with a control with “cancel” <id> will be done instead.

If you use set_position to change a dialog’s size or position, that won’t trigger
any <script_to_call> associated with “move” or “size”. Whew.

“tray” or “trayicon”: only valid if your <target> is a handle to a dialog. Specifies
what happens when a user clicks on a tray icon associated with the dialog.
Calling set_response with “tray” or “trayicon” will create a tray icon if not
already created with show service, using the dialog's icon. If you provide no
response for a tray icon (either as arguments of the show service or by call to
set_response) Clicking on a tray icon will unhide the dialog and set focus on it.
If you provide a response, suggest most typical would be to open a menu,
probably defined using the Powerpro cl services. See for instance the
onTrayRight function of dialogPluginDemo1.powerpro.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 82 of 260
page 82 of 260

10.19 change_style
dialog.change_style(<target>, <styles> [, <bAdd>])

alias: style

Used in sample scripts dialogPluginDemo1.powerpro and
dialogPluginDemoFromConfigFile.powerpro.

Use dialog.change_style() to change the styles applied to a control or the
dialog.

You must only invoke change_style after a dialog is created or run.

Other service calls can be chained to change_style if it applies to a control (as
opposed to the dialog as a whole).

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If you use the <dialog_handle>, <ctrl_id>,
form, <ctrl_id> may be absent or 0, indicating you wish to modify the style of the
dialog itself. The <window_ handle_ to_ remote_ control> is valid but not
recommended, as it will change a control's behaviour without the knowledge of
its owner.

<styles> Required: Keywords or letters, or numerical values modifying the
control’s or dialog's styles. Some keywords apply to all controls: see this table.
Other keywords work only for a specify type of control: see the appropriate
subsection of Appendix II. Keywords for dialogs are here. For Further details
see Section 11.4 “Styles: the <styles> parameter”.

<bAdd> Optional: If 1 (the default if omitted): the styles specified are added to
the current styles of the control or dialog. If 0, the specified styles are removed
the target.

10.20 set_icon
dialog.set_icon(<dialog_handle>, <icon_path>[, <icon_number>]])

aliases: icon

Used in sample scripts dialogPluginDemo1.powerpro and
dialogPluginDemoFromConfigFile.powerpro.

dialog.set_icon changes a dialog's icon.

You must only invoke set_icon after a dialog is created or run.

You can't chain other service calls to set_icon calls.

<dialog_handle> Required: A handle returned by dialog.define. See Section
11.1 "Handles to Dialogs and the <dialog_handle> parameter".

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 83 of 260
page 83 of 260

<icon_path> and <icon_number> select which icon you want to use. For details
see Section 11.8 “Icons: the <icon_path>, <path_to_image> and
<icon_number> parameters”.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 84 of 260
page 84 of 260

10.21 set_font
dialog.set_font(<target>, [, <tooltip_flag>])

alias: font

Used in sample scripts dialogPluginDemo1.powerpro,
dialogPluginDemo3.powerpro, controlFontChanger.powerpro,
regexDialog.powerpro and regexDialogScintilla.powerpro

Use dialog.set_font() to set the font of a control, a dialog and some other
windows.

You can invoke set_font at any time, even before a dialog is created or run.

Other service calls can be chained to set_font calls, providing it's invoked to
alter the font of a control, not the of the dialog as a whole or of a window handle.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If you use the <dialog_handle>, <ctrl_id>,
form, <ctrl_id> may be absent or 0, indicating you wish the font applied to all the
dialog's controls. Windows always uses the system font for the dialog box title;
executing a set_font with a zero target does not change this.

If <target> specifies an activeX control, set_font will have no effect.

If you use the <window_handle> form of <target>, you can alter the font
displayed by a control belonging to powerpro (but not – safely at least -- of any
other process, not even to pproconf.exe). E.g. for a window launched by the
Powerpro inputDialog command, e.g. by the sample script
controlFontChangerTest.powerpro) controlFontChanger.powerpro includes a
generalised version of this code:

local sList = win.childhandlelist(<dialog title>, "c=Edit")
local n = word(sList, 0)
for (local i = 1; i le n; i++)
 local hWin = word(sList, i)
 if (win.visible(hWin))
 dialog.set_font(hWin, "arial 12")
endfor

If you use the <window_handle> form of <target>, set_font returns the HFONT
associated with the window after set_font runs.

If you specify a <window_handle> to a window other than a control, probably
won’t work; most windows produecures other than those of controls don’t deal
with the WM_SETFONT control (or equivalents for richedit and scintilla
controls), so won't respond to set_font.

 Required: See Section 11.9 "Fonts: the and <font_spec>
parameters"

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 85 of 260
page 85 of 260

If you specify only some properties of a font (font size, for instance, or weight),
set_font will endeavour to preserve all some font properties of whichever
control or window you're applying set_font to, not including stuff like bold and
italic (the aspects of a font covered by the <options> component of a
<font_spec>.

<tooltip_flag> Optional: if present and beginning with "t", changes the font of
associated tooltip. Error if no tooltip has been defined by either parameters of
define_control or by a call to set_tooltip; or <target> is the dialog (0) or a static
control.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 86 of 260
page 86 of 260

10.22 set_position
dialog.set_position([<target>] , <X> [, <Y>, [<width>,

[<height>]]])

dialog.set_position(<target>, <dimensions>)

alias: position

Used in sample scripts dialogPluginDemo1.powerpro and
dialogPluginDemo2.powerpro.

Use dialog.set_position() to change the position or size of a control or the
dialog.

You can invoke set_position at any time, even before a dialog is created or run.

Other service calls can be chained to set_position calls, providing it's invoked
to alter the position or size of a control, not of the dialog.

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If you use the <dialog_handle>, <ctrl_id>,
form, <ctrl_id> may be absent or 0, indicating you wish to position the dialog as
a whole. May work with a <window_ handle_ to_ remote_ control>.

<X>, <Y>, <width>, <height> (or <dimensions> in their place): The new position
and/or size required of the control or dialog. The new position/size may be
relative to the old ones. You can’t use a resizing marker on a dimension when
calling set_position. <Y>, <width>, <height> are optional and taken as 0 if
absent; but if <target> is absent or zero, implying you're resizing the dialog, they
must all be present (or <dimensions> in their place).

If you reposition the dialog, any and all sizing modifiers applied to the dialog or
controls will apply; depending on them controls may resize with the dialog.

A dialog doesn’t need to have the “thickframe” style for set_position to work.
The “thickframe” style is needed only if you want to resize by dragging.

set_position is illustrated in the sample script dialogPluginDemo2.powerpro.

10.23 get_last_clicked
dialog.get_last_clicked()

aliases: last_clicked, clicked

Returns the handle of the last control or dialog which responded to a user
action, either by a user-defined mouse click, a normal left click, or a keyboard
shortcut.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 87 of 260
page 87 of 260

10.24 send_message
dialog.send_message(<target>, <message> [, <wParam> [,<lParam>

[,<lParam_type> [, <bRedraw>]]]])

aliases: message, send

Used in sample scripts dialogPluginDemo1.powerpro,
dialogPluginDemo2.powerpro, dialogPluginDemo4.powerpro,
dialogPluginDemoFromConfigFile.powerpro and all the regex dialogs.

dialog.send_message() allows you to send a message (using SendMessage)
to a control.. It returns the LRESULT returned by SendMessage as an integer.
Let me know if you run into a SendMessage variant that returns something else
that you want to get at.

You must only invoke send_message after a dialog is created or run.

You can't chain other service calls to send_message calls (because
send_message often returns a result).

<target>: See Section 11.1 "Specifying the Target of a Dialog service: Handles
to Dialogs, Controls, and Windows". If you use the <dialog_handle>, <ctrl_id>,
form, <ctrl_id> may be absent or 0, indicating you wish to send a message to
the dialog itself.. I'd use win.sendmessage service in most cases if you want to
use the <window_ handle_ to_ remote_ control> form; the only advantage of
using dialog.send_message instead is that can use the message keywords
appropriate for each type of control.

<message> Required: the message to send.

Almost every type of control has a large number of legal messages that can be
sent to it. You'll need to control Microsoft documentation to find what messages
are legal for which type of control, and how each one works.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 88 of 260
page 88 of 260

I've provided named messages for common messages appropriate for some
types of control (buttons, check buttons and radio buttons, list controls and
combo box controls, spinners, edit controls, sliders, progress bars, date-time
pickers, month-calendar controls, statusbars, tab controls, treeviews, listviews
and rich edit controls). Those definitions specify whether <wParam> or
<lParam> are meaningful for each named message, and whether <lParam> is
to be treated as a string integer, or pointer to a array or struct.. If the tables
indicate that <wParam> or <lParam> aren’t meaningful, the appropriate
parameter can be omitted (and will be forced to zero). If <lParam> is
meaningful, it will be treated as follows:

expected type as
specified in named

message
will be treated

integer always IN (to the control targeted by the sent
message)

string

IN unless a variable name provided, in which case
may be either IN to or OUT from the control targeted
by the sent message. If it's in OUT buffer, it's your
responsibility to ensure that the variable named is
long enough to accept the data that will be put in it.

composite
IN or OUT; you must provide a handle to a struct or
array of the appropriate type and size (as returned by
the create_struct or create_array services of the dll
plugin)

In almost all cases where is valid, it's a DWORD. I've found a few cases where
a pointer to a struct or array is required. In those cases, just provide a handle to
the appropriate composite (as returned by the create_struct or create_array
services of the dll plugin).

If you want to send a message which is not named for a particular control you
can; you'll need it's numeric value, most of which you'll find in dialog-
related_defines.txt (or, for scintilla controls, where just about everything is
driven by messages, see scintilla-related_defines.txt). If you find the one you
want there, you can paste the relevant local declaration into your script, e.g.

local BM_SETCHECK = 0x00F1

And then use it in your send_message call. If you can't find a declaration for the
message you want, you'll have to look up it's numeric value yourself in Microsoft
documentation.

<wParam> Optional: The wParam argument for the message. Always
interpreted as a number. Taken to be zero if absent.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 89 of 260
page 89 of 260

<lParam> Optional: The lParam argument for the message. May either be
interpreted as a string, number, array or struct, depending on the following
parameter. Taken to be zero or the null string if absent.

<lParam_type> Optional: How to interpret the <lParam> parameter:

value (case
insensitive)

means

1, or begins with "s" string

0, or begins with "n" number.

begins with "c"
handle of array or
struct generated by dll
plugin

If <lParam_type> is absent and , not specified differently for a named message,
<lParam> is taken as a string, unless it conforms to the pattern for an array or
struct handle, in which case it's taken as such.is a string) .

<bRedraw> Optional: If present and 1, control is redrawn after message is sent.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 90 of 260
page 90 of 260

10.25 browse_for_file
dialog.browse_for_file([<dialogHandle>,] <type_and_options> [,

<initialFolder>
[, <title> [, <defaultExtension> [, <filter>]
[, <defaultFileName> [, <varNameROstate>]]]]]])

aliases: none

Used in the main regex sample scripts regexDialog.powerpro and
regexDialogScintilla.powerpro, and in browse_for_file.powerpro.

Brings up the "File Open" or "File Save As" common dialogs; if user makes a
choice, returns the full path to the file chosen. In either case, no file is either
saved or opened: it's up to you to do that with the path returned by the service.

You can't chain other service calls to browse_for_file calls.

<dialogHandle> Optional: If present, the dialog pointed to by the handle
becomes the owner of the "File Open" or "File Save As" common dialog.

<type_and_options> Required: <type_and_options> := <type> [<options>]

<type>: A string beginning with "o", “open”, "s", “save”, "m" or “multiple”.
The latter means browse for a file to open, allowing the selection of multiple
files.

By default, without any <options>:

• If you browse for a file to open, the folder and file(s) you choose must exist.

• If you browse for a file to save and the file you choose exists, you will be
prompted whether you wish to override the file chosen.

If you pick a file or files, the service returns:

• If you specify <type> "m" or “multiple”, a string that starts with the path of
the folder in which files were selected, followed by a newline character,
followed by successive filenames chosen in that folder, separated by
newline characters. Use the PowerPro line() function to disassemble. This
applies even if you select just one file, so the result will always differ from
what happens…

• If you specify any other <type>, a string with the full path to the one chosen
file.

<type> can be followed by (but separated by whitespace from):

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 91 of 260
page 91 of 260

<options>: any combination of the following keywords, separated by
whitespace:

keyword OPENFILENAME flag means

createprompt
(Open dialog only)

OFN_CREATEPROMPT

If the user specifies a file that does not exist, this
flag causes the dialog box to prompt the user for
permission to create the file. If the user chooses
to create the file, the dialog box closes and the
function returns the specified name; otherwise,
the dialog box remains open.

filecanbeabsent
(Open dialog only)

~OFN_FILEMUSTEXIST

Without this keyword, the user can type only
names of existing files in the File Name entry
field. If this flag is specified and the user enters
an invalid name, the dialog box procedure
displays a warning in a message box. If this flag
is specified, the OFN_PATHMUSTEXIST flag is
also used.

pathcanbeabsent
(Open dialog only)

~OFN_PATHMUSTEXIST

Without this keyword, the user can type only
valid paths and filenames. If this flag is used and
the user types an invalid path and filename in the
File Name entry field, the dialog box function
displays a warning in a message box.

hidereadonly
(Open dialog only)

OFN_HIDEREADONLY Hides the Read Only check box.

readonly
(Open dialog only)

OFN_READONLY

Causes the Read Only check box to be checked
initially when the dialog box is created. This flag
indicates the state of the Read Only check box
when the dialog box is closed.

allowoverwrite
(Save dialog only)

~OFN_OVERWRITEPROMPT

Without this keyword, the Save As dialog
generates a message box if the selected file
already exists. The user must confirm whether to
overwrite the file.

nochangedir OFN_NOCHANGEDIR
Restores the current directory to its original value
if the user changed the directory while searching
for files.

nodereferencelink
s

OFN_NODEREFERENCELINKS

Directs the dialog box to return the path and
filename of the selected shortcut (.LNK) file. If
this value is not given, the dialog box returns the
path and filename of the file referenced by the
shortcut

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 92 of 260
page 92 of 260

<initialFolder> Optional: The initial folder from which to browse. If absent or the
null string, the system uses the current folder

 <title> Optional: A title for the dialog. If absent or the null string, the system
uses the default title (that is, “Save As” for <type> s; or “Open” for <type>s o or
m).

<defaultExtension> Optional: the default extension. The service appends this
extension to the chosen filename if the user fails to type an extension. This
string can be any length, but only the first three characters are appended. The
string should not contain a period (.). If this parameter is absent or the null string
and the user fails to type an extension, no extension is appended to the chosen
file.

<filter> Optional: A string containing pairs of filter strings; the separator between
members or each pair and between pairs must be \n or \r. The first string in
each pair is a display string that describes the filter (for example, “Text Files”),
and the second string specifies the filter pattern (for example, “*.TXT”). To
specify multiple filter patterns for a single display string, use a semicolon to
separate the patterns (for example, “*.TXT;*.DOC;*.BAK”). A pattern string can
be a combination of valid filename characters and the asterisk (*) wildcard
character. Do not include spaces in the pattern string.

<defaultFileName> Optional: If present, this value appears in the dialog's "File
Name" edit box.

<varNameROstate> Optional (only relevant for Open dialog): If present, and the
user chooses a file, the value of the Open/Save Read Only check box (1 or 0)
will be placed in the named variable.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 93 of 260
page 93 of 260

10.26 choose_font
dialog.choose_font([<target> [,<var_for_colour>]])
dialog.choose_font(["" ,<var_for_colour>)
dialog.choose_font([<font_spec> [,<var_for_colour>]])

aliases: none

Used in sample scripts dialogPluginDemo3.powerpro,
controlFontChanger.powerpro and the main regex scripts regexDialog.powerpro
and regexDialogScintilla.powerpro.

Brings up the font choice common dialog; if user makes a choice, returns a font
description compatible with the <font_spec> parameter of set_font, define or
define_control. See Section 11.9 "Fonts: the and <font_spec>
parameters". If no choice is made, or there's an error, returns an empty string.

You can't chain other service calls to choose_font calls.

<target> optional: See Section 11.1 "Specifying the Target of a Dialog service:
Handles to Dialogs, Controls, and Windows". If you use the <dialog_handle>,
<ctrl_id>, form, <ctrl_id> may be absent or 0, indicating you wish to initialise the
font choice common dialog with the font of the dialog as a whole. <target> can
also be a handle to any window.

If you supply <target>, choose_font will attempt to initialise the font choice
common dialog from the font of the window or control you've specified.

<font_spec>: If there's no control, dialog or window to provide a fonmt with
which to initialise the font dialog, instead of a <target> you can supply a font
specification

<var_for_colour>: optional: If present and the name of a variable that has
already been declared, the RGB value for the colour chosen in the font choice
common dialog will be placed in the variable named. The value found in the
<var_for_colour> will be used to initialise the font colour in the font choice
common dialog.

If you want to specify <var_for_colour> without specifying <target>, or
<font_spec>, the first parameter must be a null string ("").

If careful when using a target of a <dialog_handle>, with no <ctrl_id> (in order to
specify the dialog itself as the source of a font). You must not in that case
choose a variable name that's also a valid <ctrl_id>, or it will be taken as a
<ctrl_id>.

Only screen (not printer-only) fonts are displayed.

At the moment it's not possible to initialise the "script" (character set) in the font
choice common dialog, but can add if required.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 94 of 260
page 94 of 260

For an example of use, see the "Font" button in dialog generated by
dialogPluginDemo1.powerpro.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 95 of 260
page 95 of 260

10.27 destroy_window
dialog.destroy_window(<dialog_handle> [, <value_to_return>])

aliases: none

Used in the sample script dialogSubordinate.powerpro (which is used modal).

You must obviously only invoke destroy_window after a dialog is created or run.

dialog.destroy_window() tells the dialog plugin to delete the dialog window
associated with a <dialog_handle>. If you've executed a destroy_window you
can still execute dialog.run on the same handle later.

destroy_window() is safe to use from code that executes from modal dialog
controls. <value_to_return> will be returned from the dialog.run call that started
the modal dialog running.

You can't chain other service calls to destroy_window calls.

<dialog_handle> Required: A handle returned by dialog.define. See Section
11.1 "Handles to Dialogs and the <dialog_handle> parameter".

<value_to_return> Optional: Only used if the running dialog ism modal: a value
to return as a result of the dialog.run(<modal_dialog_handle>,…) service call.

10.28 destroy
dialog.destroy([<dialog_handle> | <handle_to_control>])

aliases: release

Used in all sample scripts.

dialog.destroy() is used primarily to delete a dialog window and the data
structure associated with a <dialog_handle>. Once you've destroyed a
<dialog_handle>, you can't run it again later: the data structure's gone.

You must obviously only invoke destroy after a dialog is created or run.

destroy() is not safe to use from code that executes from modal dialog controls.

You can't chain other service calls to destroy calls.

<dialog_handle> Optional, but almost always present: A handle returned by
dialog.define. See Section 11.1 "Handles to Dialogs and the <dialog_handle>
parameter". If you omit it, you will destroy the last dialog created. destroy with
no arguments is used by the dialog editor to terminate dialogs run without a
harness script.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 96 of 260
page 96 of 260

There's a limit on the number of active (i.e. not destroyed) dialog handles that
can exist at once (64 in the current release), so you might want to destroy the
ones you're finished with.

All running dialogs and their associated <dialog_handle>s will be automatically
destroyed when you unload the plugin

Example:

local hDlg = dialog.define(0, 0, 100, 100, "Hi there", "minbox",….)
dialog.define_control(hDlg, 10, 20, 20, 12, "button",…)
dialog.define_control(hDlg, "button",…)
….
dialog.run(hDlg)
 ……
hDlg = dialog.destroy(hDlg)

Unlike some in some other plugins that emit handles, the dialog plugin doesn't
automatically release <dialog_handle>s stored in local variables when a script
finishes. That would be counterproductive, to say the least, for non-modal
dialogs, where the lifetime of the dialog produced by the script will typically long
exceed that of the script that created it.

If you do destroy a handle held in a local variable, best invalidate it by e.g. doing

my_dlg = dialog.destroy(my_dlg)

You can also use dialog.destroy to delete a <handle_to_control> returned by
the dialog.make_ctrl_handle service.

10.29 destroy_all
dialog.destroy_all()

Not used in any sample scripts.

dialog.destroy_all() tells the dialog plugin to let go of all issued dialog
handles.

A dialog.unload has the same effect.

10.30 export NOT YET IMPLEMENTED
dialog.export(<target_file>)

dialog.export allows you to create <dialog_definition_file>s from created
dialogs.

The <target_file> extension determines the format the dialog is saved to. See
<dialog_definition_file> for details.

If <target_file> already exists, it will be renamed to <target_file>.bak.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 97 of 260
page 97 of 260

10.31 version
dialog.version returns the plugin version number as four digits, an assumed
decimal point before the last two digits. So version 1.34 comes back "0134".

10.32 help
dialog.help opens the help file associated with the dialog plugin, if

• the key helpFileLocation in the config file dialog.ini/plugins.ini specifies a
valid file path (rtf or chm or anything, really) location. If path isn't absolute,
its taken as relative to the PowerPro installation folder. Or, if the key
helpFileLocation isn’t present,

• the file dialogPluginReadme.chm, dialog.chm, dialogPluginReadme.rtf or
dialog.rtf is found in either the PowerPro installation folder or the plugins
subfolder thereof (the files are searched for in the order given).

10.33 returns_values, returns_status, returns_nothing
These services determine what if anything services return as retval in:

returnval = dialog.service(….)

By default, data, if there is any to be returned, comes back as the result of the
service expression (returnval in the above line). By default again, all services
set a result string in variable dialog_status.

If you wish different behaviour, call either returns_status() or
returns_nothing().

If you call returns_status(), all subsequent service calls will return a result
string as the result of the call. dialog_status wont be altered, and data will be
returned via the variable dialog_result.

Many services return no data, only a result status, so they will always return that
result status as the return value of the service, regardless of which of the
returns_xxx services has been called.

Use returns_values() to return to default behaviour.

If you unload the plugin, its behaviour returns to the default in any subsequent
call, i.e. further dialog service calls will return values.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 98 of 260
page 98 of 260

10.34 error_dialog_on(), error_dialog_off()
Some dialog services can result in errors. For instance, you might try to restore
from a non-existent ini file, or a variable might be defined in an ini file that
wasn't declared, and should have been. In addition to such errors setting a
PowerPro variable or returning a value with a status message the prefixed
"ERROR:" (see previous section); they will also trigger the standard PowerPro
script error dialog, allowing you to cancel all running scripts.

Under some conditions you might not want dialog plugin errors to be treated
as scripting errors, and you would therefore not want to see the PowerPro script
error dialog. If that's what you want (maybe because you're testing for the
presence or absence of a section/key pair), invoke dialog.error_dialog_off(),
or make sure the raiseErrors key in the configuration ini file is false or 0.
Invoke dialog.error_dialog_on() to turn error dialogs back on after you turn
them off.

If you unload the plugin, its behaviour returns to the default in any subsequent
call, i.e. errors on further dialog service calls will cause the error dialog to pop
up.

Invoking dialog.error_dialog_off() only affects error dialogs appearing when a
dialog service call goes wrong. The normal Powerpro error dialog will appear
if anything else goes wrong in Powerpro.

10.35 set_base, get_base
dialog.set_base(<base>)
dialog.get_base()

Used in all scripts to guarantee base used; illustration of use of base 0 in
dialogPluginDemo4.powerpro.

set_base affects the interpretation of arguments that are an index integer, e.g.
clear, and variants of get_value (alias get) and set_value (alias set) for listviews,
combo boxs and list boxs, and for the latter, tab controls.

<base> can be 0 or 1. If not called, base for indexes is the value of the
indexBase in the configuration ini file, or, if that's not present, 1.

get_base returns 0 or 1, the current effective base.

10.36 config
dialog.config(name_of_ini_file)

specifies a configuration ini file, with format, section and keys as described in
Section 9.1

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 99 of 260
page 99 of 260

The ini file can either be given as an absolute path, or a path relative to the
folder returned by the pprofolder variable (generally the folder containing the
currently running powerpro configuration file).

Returns "OK" if file and found and there are no keys with illegal values, or a
message beginning "ERROR:" if there is one.

If you unload and reload a plugin, its behaviour returns to the default or to that
defined by a default config ini file (see Section 9.1)

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 100 of 260
page 100 of 260

11.0 Common Service Arguments

11.1 Specifying the Target of a Dialog service: Handles to
Dialogs, Controls, and Windows

Since Powerpro can't itself store and remember dialog details, the dialog define
service produces a handle to one. The dialog details are stored internally,
within the plugin A handle is just a simple string beginning "d\x05" followed by
a number from 3000 to 3255.

It's essential to know the handle returned by a call to dialog.define, because
without it you can't add controls to it or further modify its properties.

Example:

local hDlg = dialog.define(0, 0, 100, 100, "Hi there", "minbox",….)
dialog.define_control(hDlg, 10, 20, 20, 12, "button",…)
dialog.define_control(hDlg, "button",…)
….
dialog.run(hDlg)
 ……
hDlg = dialog.destroy(hDlg)

The plugin can store (and provide handles for) up to 64 dialogs. Because
there's a limit, you may wish to use the dialog.destroy service to let go of
dialogs you no longer need.

Unlike some other plugins that emit handles, the dialog plugin doesn't
automatically release <dialog_handle>s stored in local variables when a script
finishes. That would be counterproductive, to say the least, for non-modal
dialogs, where the lifetime of the dialog produced by the script will typically long
exceed that of the script that created it.

Almost all other dialog plugin services take a <target> as a first argument or pair
of arguments.

<target> := <dialog_handle>, <ctrl_ids> | <window_ handle_ to_ remote_
control> | <handle_to_control>

<dialog_handle> A handle returned by dialog.define, as described above.

<ctrl_ids> Required with a <dialog_handle>: see Section 11.3.

If you use <dialog_handle>, <ctrl_id> as a services <target> you can apply
the service to the <dialog_handle> using the handle.service syntax: e.g.
instead of

dialog.define_control(hDlg, "buttonname",…)

use

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 101 of 260
page 101 of 260

hDlg.define_control("buttonname",…)

<window_ handle_ to_ remote_ control>: instead of a <dialog_handle> and a
<ctrl_id> many services can take a first argument of a (window) handle of a
control, as long as the control’s class and style is equivalent to one of the
control types the dialog plugin knows about. Such a handle can be obtained
from something like:

<handle> = word(win.childhandlelist(<cl>, "c=SysListView32"), 1)

You may have particular difficulty getting hold of a specific button, radio
button, group or checkbox, as all these are of windows class "Button";
generally you'd have to get process each word in the list returned by

<handle> = win.childhandlelist(<cl>, "c=Button")

and use win.gettext to get each controls text. See
dialogPluginDemoNonNative.powerpro for examples.

<handle_to_control> is returned by the dialog.make_ctrl_handle service, and
as a result of most services when applied to a control that don’t other data.
These are interesting as locals in situations where you want to operate
repeatedly on the same control in the same function, or, stored as a static, for
controls that need to be reference in many different control handler scripts.
Such handles, if stored in local variables, are deleted when the local goes out
of scope.

If you call a service that returns a <handle_to_control> with multiple control
ids, it will return the handle of the first control id encountered.

Scripting tip: don't unload the dialog plugin at the end of a script that either
creates a dialog, or handles a response from it. It can take a few microseconds
for a dialog to be taken down, and the plugin needs to be around while that
happens.

If you do destroy a handle held in a local variable, best invalidate it by doing
e.g.:

myDlgHan = dialog.destroy(myDlgHan)

Unloading the dialog plugin will cause all created dialogs to be destroyed.

You can chain other service calls that can a <dialog_handle> as a first
argument after calls to dialog.define.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 102 of 260
page 102 of 260

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 103 of 260
page 103 of 260

11.2 The <dialog_definition_file> Parameter and the Format of
Definition Files

A <dialog_definition_file> defines a dialog's properties and contained controls.
It can be activated using the create or run services.

A <dialog_definition_file> has two possible formats: one-line-per control or ini
file.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 104 of 260
page 104 of 260

11.2.1 The one-line-per control <dialog_definition_file>

Any <dialog_definition_file> with an extension other than “.ini” is taken to be
one-line-per control.

A <dialog_definition_file> contains one line (usually the first one, but sometimes
the second; see second bullet point below) to define the dialog's properties,
followed by one line per control within the dialog.

The lines defining the dialog or controls are made up of fields, which correspond
exactly to the parameters of dialog.define (to describe the dialog) and
dialog.define_control) to describe a control). Fields are separated by the field
separator character, which by default is the bar (“|”). You can specify another
by:

• Providing another default character via the defaultFieldSeparator in the
dialog.ini/plugins.ini configuration file.

• Providing a line preceding the line which defines the dialog in your
<dialog_definition_file> containing just two characters which are non-
numeric and not one of “+-pPmM”, the first one of which will be taken as the
default fieldSeparator character for the rest of the file, or;

• By ensuring that the first non-whitespace characters of any line in a
<dialog_definition_file> that defines the dialog or a control are two
characters which are non-numeric and not one of “+-pPmM”, the first one of
which will be taken as the fieldSeparator character for that line.

The one line to define the dialog has the following fields, corresponding to and
described in the list of parameters for dialog.define:

<X>, <Y>, <width>, <height>, <caption> [, <styles> [, <script_to_call>
[, <command_arg> [, <events> [, <action_on_close> [, <icon_path> [,
<icon_number>[, <font_spec> [, <right_click_command>]]]]]]]]] or

<dimensions>, <caption> [, <styles> [, <script_to_call>
[, <command_arg> [, <events> [, <action_on_close> [, <icon_path> [,
<icon_number>[, <font_spec> [, <right_click_command>]]]]]]]]]

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 105 of 260
page 105 of 260

Subsequent lines to define controls have the following fields, corresponding to
and described in the list of parameters for dialog.define_control:

<X>, <Y>, <width>, <height>, <control_type> [,<name> [,<text> [, <styles>
[, <script_to_call> [, <command_arg> [, <events> [, <foreground>, [
<background>
[, <id> [, <font_spec> [, <tooltip> [, <tooltip_style>
[, <right_click_command>]]]]]]]]]]]]] or

<dimensions>, <control_type> [,<name> [,<text> [, <styles>
[, <script_to_call> [, <command_arg> [, <events> [, <foreground>, [
<background>
[, <id> [, <font_spec> [, <tooltip> [, <tooltip_style>
[, <right_click_command>]]]]]]]]]]]]]

The only difference between a parameter and a field is that, unlike for
dialog.define_control, there is no need to a <dialog_handle>, since the
particular dialog controls are going to be added to is known.

One further issue: the fields within each line of the are normally taken as literal
text. On occasion you may wish the dialog plugin services to interpret a field as
a PowerPro expression. To cause that, make the first non-whitespace character
of the field the evaluation marker, which is # by default.. You can change that to
another default character via the defaultEvaluationMarker in the
dialog.ini/plugins.ini configuration file. Or, you can change the expression
marker character on a per-file or per-line basic using the techniques discussed
above: the active expression marker character would follow the field separator
character.

Another boring detail: if you want a tooltip with line breaks, you can’t define it in
a <dialog_definition_file>, since you can’t include “\n” characters; you’ll have to
use set_tooltip instead. I can probably code for newlines if anyone really needs
it.

The distribution includes dialogPluginDemo.txt as a sample one-line-per-control
<dialog_definition_file>.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 106 of 260
page 106 of 260

11.2.2 The ini file <dialog_definition_file>

Any <dialog_definition_file> with a “.ini” extension is taken to be just that -- an
ini file.

The dialog itself is defined by the contents of the [DialogProperties] section,
which has the following keys, corresponding to the equivalently-named
parameters of the dialog.define service:

left required unless dimensions is present
top required unless dimensions is present
width required unless dimensions is present
height required unless dimensions is present
dimensions if present, "left", "top", "width", "height" ignored
caption required
styles optional
scriptToCall optional
commandArgument optional
events optional
actionOnClose optional
iconPath optional
iconNumber optional
maxControls optional
comment optional
font optional
commandMouseAction optional
evaluationMarkerDefault optional
evaluationMarker optional
fieldDelimiterDefault optional
fieldDelimiter optional

The “evaluationMarkerDefault” key specifies a marker for expressions to be
evaluated and overrides the default “#” for the entire ini file, unless in turn
overridden overridden by:

The “evaluationMarker” key specifies a marker for expressions to be evaluated
and overrides the default the “evaluationMarkerDefault” value if present (“#”
otherwise), just for the [DialogProperties] section.

The “fieldDelimiterDefault” key specifies a field delimiter for the entire dialog
description. It's only relevant if you switch back to a one-line-per control
<dialog_definition_file> format.

The “fieldDelimiter” key specifies a field delimiter for the dialog description line.
It's only relevant if you switch back to a one-line-per control
<dialog_definition_file> format.

The "comment" key is only used to try and capture comments (lines beginning
with a semicolon) just before the dialog definition line of a one-line-per control
<dialog_definition_file>, so they can be restored if you convert back to it.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 107 of 260
page 107 of 260

Each control must have a unique section name other than [dialogProperties]; if
you create an ini file from a text file, section names will be assigned of the form
[CONTROLnnnn] where nnnn is an integer starting at 1001.

Each such section has the following keys, corresponding to the equivalently-
named parameters of the dialog.define_control service:

name optional
controlType required
left required unless "dimensions" is present
top required unless "dimensions" is present
width required unless "dimensions" is present
height required unless "dimensions" is present
dimensions if present, "left", "top", "width", "height" ignored
textOrVar optional
styles optional
scriptToCall optional
commandArgument optional
events optional
foreground optional
background optional
font optional
id optional
tooltip optional (can’t include line breaks; use
set_tooltip)
tooltipstyles optional
commandMouseAction optional
comment optional
evaluationMarker optional
fieldDelimiter optional

The “evaluationMarker” key specifies a marker for expressions to be evaluated
and overrides the default “#” if present. If not present but “evaluationMarker” is
specified for the dialog, the dialog evaluation marker applies to all controls as
well.

The “fieldDelimiter” key specifies a field delimiter for the line describing a
control. It's only relevant if you switch back to a one-line-per control
<dialog_definition_file> format.

The "comment" key is only used to try and capture comments (lines beginning
with a semicolon) just before a control definition line in a one-line-per control
<dialog_definition_file>, so they can be restored if you convert back to it.

The distribution includes dialogPluginDemo.ini as a sample ini-form
<dialog_definition_file>.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 108 of 260
page 108 of 260

11.2.3 Converting and creating <dialog_definition_file>s

You can use the export service to create a <dialog_definition_file>, or convert
one to another format. To convert, just create a dialog from a file in one format,
and export to the other.

Comments (lines beginning “;”) and inter-line spacing in ini files will be lost in
conversion.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 109 of 260
page 109 of 260

11.3 Control Ids
Anything that manipulates or queries a control or the dialog itself may need a
<ctrl_id> parameter. This can be:

• for some services: 0, which signifies the service is to apply to the dialog
itself, not one of it's controls. For some services this is the default, assumed
if the <ctrl_id> parameter is absent. For such services (show, enable, focus,
show, set_font, set_position, set_value, get_value (alias get), choose_font
and set_response) you can omit the <ctrl_id> parameter even if further
arguments follow, which means you can use a dialog handle like this:
<dialog_handle>.get instead of having to do <dialog_handle>.get(0)).

• Otherwise, you must provide a control id, which is either:

• a number from 101 onward, or:

• the name of a control (i.e. the exact value you passed as the <name>
parameter when you invoked dialog.define_control for the control in
question). If you didn’t give the control a non-null <name> parameter, you
won’t be able to find it by name.

• Some services (ones that change controls, but don’t fetch their properties)
allow multiple, white-space separated control names or numbers: enable,
show, set_colour, set_value, set_position, change_style, set_font, clear, and
send_message.

Using control names instead if numbers would probably be slightly slower, since
I have to do a loop through all controls looking for a matching <name>. But it's
not likely to be a noticeable delay unless you perform some service call
requiring a name control id very frequently (in which case getting a
<handle_to_control> using make_ctrl_handle). And names are probably a lot
more convenient, especially if you’ve defined your dialog with a dialog
configuration file.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 110 of 260
page 110 of 260

11.4 Styles: the <styles> parameter
optional in: define
required by: define_control

The <styles> parameter consist of a series of one or more individual styles,
separated by whitespace.

Each style is either a keyword or letter, or a hex or decimal constant.

Which style keywords and letters are valid depends on what you are applying
styles to: the dialog itself, or a particular class of control. The valid possibilities
are listed in tables in Sections 10.1 (for the define service) and 10.2 (for the
define_control service).

Keywords and letters are translated into the appropriate constants, also listed in
those tables. Some obscure styles might not be enshrined in keywords; for
those you can use the style constants directly. I've copied some of those in the
VC++ header files into the file dialog-related_defines.txt as local variable
assignments like:

local SS_CENTER = 0x00000001

If you want to use any such variable declaration/assignments in your script, just
copy the lines you need and paste 'em in.

If you’re using constants like these in combination with other styles, you must
make sure each style is delimited by white space:

local sStyles = "flat border " ++ SS_CENTER
dialog.define_control(hDlg, "static", sStyles, 10, 280, 75, 30, sSt1Txt)

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 111 of 260
page 111 of 260

Styles Applying to all Controls

this style name or this
letter to:

3d 3 apply extended style WS_EX_CLIENTEDGE

modalframe - apply extended style
WS_EX_DLGMODALFRAME

hidden h prevent application of style WS_VISIBLE

border b apply style WS_BORDER

notab t prevent application of style WS_TABSTOP:
control won’t be in tab sequence

group g

apply style WS_GROUP defines the start of a
group within a dialog box. All controls defined
between two WS_GROUP styles are members
of a group. Arrow keys can then be used to
navigate between members of a group.

All radio buttons in a group after the first should
have the "notab" anti-style.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 112 of 260
page 112 of 260

Numeric constants: If you're including a number in a string, observe the same
rules PowerPro uses for numerics. Anything beginning 0x is treated as hex;
anything else beginning 0 is octal; everything else is decimal.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 113 of 260
page 113 of 260

11.5 Script Calls and Their Arguments:
the <script_to_call> and <command_arg> parameters

optional in: define, define_control, set_response

PowerPro scripts to call can be specified for a control, a tooltip, or the dialog as
a whole using the <script_to_call> or <right_click_command> parameters of
define or define_control, respectively, or in calls to set_response They will most
likely look like this:

scriptfileName
scriptfileName@label

You can use the PowerPro cb() or cbx() function e.g.

cb(<full_path_to_scriptfile@label>)
cb(<full_path_to_scriptfile>)

cbx("@label")

You can also indicate a command list within your pcf by prefixing
<script_to_call> with "!":

!commandListName
!commandListName@label

Don’t attempt to specify arguments as part of <script_to_call>. This, for
instance, won’t work as <script_to_call>:

scriptfileName(“urk”)

Don't prefix your script with a full stop.

You can use an absolute path to a script if you want.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 114 of 260
page 114 of 260

The <script_to_call> you specify will fire if:

• the control with which it’s associated generates an event (typically a
WM_COMMAND, or WM_NOTIFY message with it's accompanying
notification) for which the dialog plugin is monitoring.

By default, only these events fire <script_to_call>:

o buttons and the button variants (check box controls, radio buttons)
respond to the BN_CLICK notification accompanying a
WM_COMMAND message.

o tab controls respond to the TCN_SELCHANGE notification sent with a
WM_NOTIFY message.

You can specify non-standard events for controls using the <events>
parameter of define_control.

• …Or: a control or the dialog has an associated WM COMMAND,
WM_NOTIFY or mouse event specified by a previous call to set_response.

• …Or tooltips call their <script_to_call> when they display.

The <command_arg> parameter is optional; it's value is passed to
<script_to_call> when it's invoked: see the next section.

The length of <script_to_call> plus the length of <command_arg> must be less
than 500, or you'll get an error message.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 115 of 260
page 115 of 260

11.5.1 The Structure of Event-Handling Scripts

When a notification accompanying a WM COMMAND or WM_NOTIFY
message, or a mouse event, causes a control to execute a <script_to_call>, the
dialog plugin attaches six parameters to the call: so, a typical event-handling
script might look like this:

Function onX(<sUserArg>, <dlgHan>, <iCtrlNo>, <msg1>, <msg2>, <targHan>)
local dialog_status
……
quit

The arguments are as follows:

<sUserArg>: the value you specified as the <command_arg> parameter in the
same define_control service call in which you specified the
<script_to_call> that triggered this script to run. If you specified
no <command_arg> parameter, 0 is passed instead.

<dlgHan>: the handle (as generated by dialog.define) of the dialog that
generated this call.

<iCtrlNo>: the number of the control that generated this call. Within each
dialog control numbers start at 1 and are assigned in the order
that controls are created with dialog.define_control. Also the
LOWORD of the wParam passed to the dialog-handling
procedure when the triggering event occurred.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 116 of 260
page 116 of 260

<msg1>: If you receive a message (a WM_HSCROLL or WM_VSCROLL)
because a scrollbar control has moved, the text “scroll”

If you receive a message because of any other notification
accompanying a WM COMMAND or WM_NOTIFY, <msg1>
contains the value of that notification , e.g. BN_CLICK. Usually
the same as the HIWORD of the wParam passed to the dialog-
handling procedure when the triggering event occurred.

If the message occurs because of a mouse event, <msg1> will
be one of:

<msg1> in hex means

WM_RBUTTONUP 0x0205 right

WM_MBUTTONUP 0x0208 middle

WM_LBUTTONUP 0x0202 left

WM_XBUTTONUP 0x020C mouse4

WM_XBUTTONUP
+ 0x10000

0x1020
C

mouse5

<msg2>: If you receive a message (a WM_HSCROLL or WM_VSCROLL)
because a scrollbar control has moved, this will be the current
position of the scrollbar.

If you receive a message because of any other notification
accompanying a WM COMMAND or WM_NOTIFY, <msg2>
contains the value of the lParam parameter sent to the message
handler.

If the message occurs because of a mouse event, <msg2> will
indicate whether any modifer keys were pressed when the
mouse action occurred and will be zero or a combination of:

<msg2> in hex means

VK_CONTROL 0x11 ctrl

VK_SHIFT 0x10 shift

VK_MENU 0x12 alt

<targHan>: the handle of the control that triggered the message, or, if
message originated from the dialog itself, it's handle. This is

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 117 of 260
page 117 of 260

redundant on some of previous parameters, but handles for
controls evolved after stuff like control numbers.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 118 of 260
page 118 of 260

11.5.2 Which Script?

You can specify a script to run for a dialog as a whole as a parameter of
dialog.define, and one for each control as a parameter of dialog.define_control.
Which one runs: depends.

A script runs when

• a control receives a notification or message and,

• that notification or message is set to be one that is to be noticed by the
control itself (via the define_control or set_response services), by the
dialog (via the define or set_response services), or by the default for the
control's type (BN_CLICKED for buttons, check box controls and radio
buttons); and

• a <script_to_run> has been set either for the control or the dialog as a
whole.

If on any given notification to any given control there's either a script to run for
the control or for the dialog, but not both, there's no problem: If the notification
is specified as an event for either the dialog or the control or even both, then
only one script will run. A script defined to run for the dialog as a whole will be
the unambiguous fall-back script for controls that have no script of their own.

But what happens if both the control and the dialog have a defined script to run?
Which fires?

notifications accompanying a WM COMMAND or WM_NOTIFY message

for: message(s) and script defined?

control yes yes yes yes no no no no

dialog yes yes no no yes yes no no

control type yes no yes no yes no yes no

which script runs: * c c c c d d c n

*c: control's d: dialog's n: none

Which, translated means: a script defined for a control always aces a script
defined for the dialog; except if the notification is only an event at dialog level, or
only at dialog level and as the default for the type of control/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 119 of 260
page 119 of 260

11.5.3 <action_on_close>

There's an <action_on_close> parameter of the define service that specifies a
script that's run when you close the dialog by any action at all; clicking a button
that terminates; <alt>-F4;or from the control box; or by <escape>.
<action_on_close> can be any PowerPro command, though I expect it will be
the name of a script (or subscript) to call. No arguments are assumed, though,
so you can do whatever command you want. You should not manipulate any
controls or the dialog; it's all ready on the way to being taken apart by the time
<action_on_close> is invoked. In particular don't invoke dialog.destroy; it's
already happening.

Use <action_on_close> for doing stuff like terminating events, invoking
PowerPro commands, etc.

An alternative to having an <action_on_close> is to make sure you have a
control with an <id> of "cancel", even a hidden one. If you do and you don’t
have an <action_on_close>, the <script_to_call> associated with that control
will fire if you close your dialog by any means except <enter>. To cover that
eventuality, which will only close the dialog if you've defined a control with an
<id> of "ok", make sure you do your terminating code in the <script_to_call>
associated with that control as well. See Section 11.5 “Script Calls and Their
Arguments”.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 120 of 260
page 120 of 260

11.6 Specifying Which Messages Are Responded To:
the <events> parameter

optional in: define, define_control

Scripts are run (see previous section) when events occur.

By default:

• buttons and the button variants (check box controls, radio buttons) respond
to the BN_CLICK notification accompanying a WM_COMMAND message.

• tab controls respond to the TCN_SELCHANGE notification sent with a
WM_NOTIFY message (and deliver the numeric id of the tab changed
(lowest legal value 0 or 1) as the <msg2> parameter sent to your
<script_to_run>.

Using the <events> parameter of the define_control service, you can override
this default for any control and specify which notifications accompanying the
WM_COMMAND or WM_NOTIFY messages will cause it to trigger a call back
to a PowerPro script.

There's a problem with WM_NOTIFY messages (which mostly? all? come from
the common control group); the data that travels with them is not always in the
same format, so it's not always possible to determine exactly which notifications
trigger it, and from which control them come. My code assumes

• <msg2> delivers a pointer to a NMHDR structure (from which the notification
can be deduced. Possible values include those beginning NM_ (for all
controls), and those containing ??N_ (for various flavours of common
controls, especially listviews and treeviews, neither implemented yet); see
dialog-related_defines.txt for some predefined ones.

• The id of the originating control either gets delivered as the value of
wParam, or as the idFrom member of the NMHDR structure delivered with
<msg2>

If the WM_NOTIFY notification you wish to use doesn’t conform to the above
requirements, it won’t work; let me know and I'll see if I can add support for the
notification you want.

Using the <events> parameter of the define service, you can specify events
which should be notified for all controls in the created dialog..

You can specify up to ten notifications for any control or dialog.

If you wish to prevent event monitoring for a control or dialog, just specify an
<events> parameter of "none".

You specify a notification just by typing its hex or decimal value, if you know it.
Or you can find it in dialog-related_defines.txt, and copying the local variable

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 121 of 260
page 121 of 260

assignments you need from there to your script. For instance, if you want to
monitor a particular edit box for changes, copy

local EN_CHANGE = 0x0300

to your script and use it to establish monitoring of a particular edit box with:

dialog.define_control(hDlg, "editbox", "", 10, 10, 245, 40, "", ;;+
".myScript@ebChange", "", EN_CHANGE)

If you’re using more than one notification code, you must make sure each is
delimited by white space:

local EN_VSCROLL = 0x0602
local sNotifs = EN_CHANGE ++ " " ++ EN_VSCROLL

dialog.define_control(hDlg, "editbox", "", 10, 10, 245, 40, "", ;;+
".myScript@ebChange", "", sNotifs)

For an explanation of how events determine which of several scripts might get
fires, see above. Section 11.5.2 "Which Script?".

11.7 Colours: the <foreground>, <background> parameters
optional in: define_control, set_colour

You can specify the default colour for the foreground or background with the null
string, or by omitting the parameter, or by using the word "default".

Or: you can use any of these colour names (main HTML colour names,
according to autoHotKey's Chris Mallett):

name COLORREF name COLORREF name COLORREF name COLORREF

black 0x000000 maroo
n

0x000080 green 0x008000 navy 0x800000

silver 0xC0C0C0 red 0x0000FF lime 0x00FF00 blue 0xFF0000

grey 0x808080 purple 0x800080 olive 0x008080 teal 0x808000

white 0Xffffff fuchsi
a

0xFF00FF yellow 0x00FFFF aqua 0xFFFF00

Or you can provide a number representing a COLORREF. Easiest way to get a
number is to use the dialog.rgb function.

http://www.autohotkey.com/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 122 of 260
page 122 of 260

11.8 Icons: the <icon_path>, <path_to_image>, and
<icon_number> parameter

optional in: define (<icon_path>)
show (<icon_path>)

required in: set_image (<path_to_image>)

<icon_path>/<path_to_image> is either the path to a source of icons (dll, ico, icl,
or exe file), or the name of a system icon.

If <icon_path>/<path_to_image> is meant as a relative path, first it tested to
see if it's relative to the location of the current configuration file (the folder
returned by pprofolder); if not, it's then tested to see if it's relative to the
PowerPro installation folder. If omitted or the null string, it's treated as specifying
PowerPro.icl in the same folder as PowerPro.exe. That means you can specify
an icon in PowerPro.icl as either "" or "PowerPro.icl" (a path relative to the
PowerPro installation folder).

If it's one of the following keywords, an icon embedded in the plugin dialog.dll
will be used:

keyword numbe
r icon selected:

blue2Q 1 blue icon, 2 question marks

green2Q 2 green icon, 2 question marks

red2Q 3 red icon, 2 question marks

blueQ2CkBar 4 blue icon, question mark, 2 checks, bar

greenQ2CkB
ar 5 green icon, question mark, 2 checks,

bar

redQ2CkBar 6 red icon, question mark, 2 checks, bar

blueQ2Ck 7 blue icon, question mark, 2 checks

greenQ2Ck 8 green icon, question mark, 2 checks

redQ2Ck 9 red icon, question mark, 2 checks

blue1Q 10 blue icon, 1 question mark

green1Q 11 green icon, 1 question mark

red1Q 12 red icon, 1 question mark

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 123 of 260
page 123 of 260

You can also pick these icons from the file ?"plugins\dialog.dll" (a path relative
to the PowerPro installation folder) with the icon number indicated. And

env("SystemRoot") ++ ?"\system32\shell32.dll"

will get you the standard system icons.

The dialog plugin uses gdiplus if it's available (for e.g. resizing images).

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 124 of 260
page 124 of 260

If it's one of the following keywords, one of the standard system icons is used:

keyword icon selected:

application Default application icon

asterisk
information Asterisk (used in informative messages)

exclamation
warning

Exclamation point (used in warning
messages)

hand
error

Hand-shaped icon (used in serious
warning messages)

question Question mark (used in prompting
messages)

winlogo Windows logo

<icon_number> Optional: The icon within the file <icon_path> to use. If omitted
or the null string,, taken to be 0 if <icon_path> is specified; taken to be 4 (the
icon for ScriptFiles) if no explicit <icon_path> given and PowerPro.icl is the
assumed icon source.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 125 of 260
page 125 of 260

11.9 Fonts: the and <font_spec> parameters
required in: set_font
optional in: define, define_control

 := <font_spec> | <font_handle>

<font_spec> := [<stock_font> | <font_name>][<options>][<point_size>]

All of <font_spec> is case insensitive.

If <font_name> contains white space, it must be enclosed in quotes.

If you provide neither <stock_font> or <font_name>, the stock font associated
with DEFAULT_GUI_FONT will be used.

<options> if present are separated from <font_name> (if present) by whitespace
and may include "K" for strikethrough, "U" for underline, "I" for italic, and any of
the following to set weight:

set with Weight Define Symbol

T 100 FW_THIN

L- 200 FW_EXTRALIGHT
FW_ULTRALIGHT

L 300 FW_LIGHT

nothing 400 FW_NORMAL
FW_REGULAR

M 500 FW_MEDIUM

B- 600 FW_SEMIBOLD
FW_DEMIBOLD

B 700 FW_BOLD

B+ 800 FW_EXTRABOLD
FW_ULTRABOLD

H 900 FW_HEAVY
FW_BLACK

You can have <options> without a <font_name>, and vica versa; but if you do
make sure a <font_name> can't be confused with <options>; if you have a name
made entirely of the letters TUITLMB and less than six letters long, quote it.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 126 of 260
page 126 of 260

<point_size> if present and preceded by anything is separated from what
precedes by whitespace. May include a decimal fraction, eg. "10.5" is valid; the
decimal separator will vary with your locale, e.g. it may be a comma in many
eurolands.

<font_handle> : The only way you can get a font handle at the moment is to use
a script with dll plugin calls. You can only specify a <font_handle> as an
argument to set_font, and then only once the dialog or control has been created
(since you can't get a valid font handle for a window unless it already exists).

<stock_font> may be one of the following letters or names:

name lette
r

specifies equivalent #define

gui g
on a US English non-customized XP machine.,
maps to "MS Shell Dlg" which in turn maps to
"Microsoft Sans Serif"

DEFAULT_GUI_FONT

system s

The system font. This is a proportional font based
on the Windows character set, and is used by the
operating system to display window titles, menu
names, and text in dialog boxes. The system font
is always available. Other fonts are available only
if they have been installed.

SYSTEM_FONT

fixed f A monospace font based on the Windows
character set. A Courier font is typically used. ANSI_FIXED_FONT

variable v A proportional font based on the Windows
character set. MS Sans Serif is typically used. ANSI_VAR_FONT

device d

The preferred font for the given device. This is
typically the System font for display devices;
however, for some dot-matrix printers this is a font
that is resident on the device. (Printing with this
font is usually faster than printing with a
downloaded, bitmapped font).

DEVICE_DEFAULT_FONT

oem o
a monospace font based on an OEM character
set. For IBM® computers and compatibles, the
OEM font is based on the IBM PC character set.

OEM_FIXED_FONT

sysfixed x A monospace font compatible with the System
font in Windows versions earlier than 3.0. SYSTEM_FIXED_FONT

If anyone needs the character set option, can be added.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 127 of 260
page 127 of 260

11.10 Control and Dialog Positions and Sizes
required in: define, define_control

Mandatory parameters of calls to define and define_control define sizes and
positions of controls and dialogs.

11.10.1 <dimensions>

With the various pre- and post-fixes allowed in <X>, <Y>, <width> and <height>
parameters, all of which require a quoted string instead of a plain integer in a
parameter list, you can instead merge all four parameters into one string (the
<dimensions> parameter), which replaces <X>, <Y>, <width> and <height>
parameters in calls to define or define_control. Leave whitespace between the
subfields, which are in the same order as the original parameters. Trailing
subfields may be omitted and will be assumed to be 0.

11.10.2 Dialog Units

<X>, <Y>, <width> and <height> parameters aren't in pixels; they are in dialog
units, which are based on the size of the font used by the system (and chosen
by the user). If you have a large font selected, the dialog will be large, if you use
a smaller font, the dialog will be that much smaller. This is important as it makes
sure that all of the controls are the proper size to display their text in the current
font.

These measurements are device independent, so an application can use a
single template to create the same dialog box for all types of display devices.
This ensures that a dialog box will have the same proportions and appearance
on all screens despite differing resolutions and aspect ratios between screens.

One horizontal dialog unit is equal to one-fourth of the average character width
for the system font.

One vertical dialog unit is equal to one-eighth of the average character height
for the system font.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 128 of 260
page 128 of 260

11.10.3 Resizing Dialogs

optional in: define, define_control

Used in sample scripts dialogPluginDemo2.powerpro,
dialogPluginDemo7.powerpro,
regexDialog.powerpro (via associated dialog_definition_file), and
regexDialogScintilla.powerpro (via associated dialog_definition_file)

<X>, <Y>, <width> and <height> parameters in calls to both define and
define_control (or their equivalent subfields in a <dimensions> parameter) can
be given a suffixes. These determine what happens when a dialog is resized.

First: you can only resize a dialog by dragging if it has the "thickframe" style. If
it has that style, you can make resizing easier if you want to by adding a status
bar with the "sizegrip" style.

When a dialog is resized, by default all controls just stay where they are,
unchanged. If you want to override that behaviour, use the following postfixes:

postfixes mean apply to explanation

L or I left or inner X anchor left; preserve distance between left
edge of dialog and left edge of contro

R or O right or outer X anchor right; preserve distance between right
edge of dialog and right edge of control

T or I top or inner Y anchor top; preserve distance between top
edge of dialog and top edge of control

B or O bottom or
outer Y

anchor bottom ; preserve distance between
bottom edge of dialog and bottom edge of
control

$ both X Y anchor both edges of the control;
inconsistent with W or H or "!"

! proportional X Y W H dimension grows in proportion to increasing
dimension of dialog

If <X> and/or <Y> parameters in calls to define have a resizing postfix, all the
dialog's controls will move as specified by those postfixes in response to the
dialog's new dimensions. If <width> and/or <height> are postfixed, all controls
will be resized.

Adding a resizing postfix to the <X>, <Y>, <width> and/or <height> parameters
(or their equivalent subfields in a <dimensions> parameter) in calls to
define_control that is identical to the equivalent postfix in the call to define which
created the control turns off that postfix for that control.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 129 of 260
page 129 of 260

Adding a resizing postfix to a parameter in calls to define_control that is
different to the equivalent postfix in the call to define overrides that suffix for that
control.

So for instance if the <width> parameter of a call to define is postfixed with "!",
and the <width> parameter of a call to define_control for a control for the same
dialog is also postfixed with "!", that particular control will not resize on the width
dimension when the dialog is resized.

To summarise:

Does parameter has
postfix?

control
changes

with
dialog?dialog control

no no no

no yes yes

yes no yes

yes yes, identical no

yes yes, different yes

The dialog editor remembers resizing postfixes when they occur in
dialog_definition_files, and preserves them when saving.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 130 of 260
page 130 of 260

11.10.4 Control Dimensions

optional in: define_control, set_position

<X>, <Y>, <width> and <height> parameters (or their equivalent subfields in a
<dimensions> parameter) in calls to define_control (except for the first call to it
for a dialog) may be relative to the previously defined control.

The same parameters of set_position may be relative to the current dimensions
of the control or dialog.

Relative dimensions are expressed with the following prefixes::

• “+n”, “Pn” or “pn” indicates that the new dimension will be n units larger
than the old or previous

• “-n”, “Mn” or “mn” indicates that the new dimension will be n units smaller
than the old or previous

• “0” indicates that the new dimension will be the same as the old or
previous

• "Z", on it's own, or followed by zero, that overrides the previous meaning
of "0"; i.e. a zero value should be used for the dimension in question.

In addition any X or Y dimension in any call to define_control or set_position:

• ">n" or "_n" should be taken as a distance n units from the right or
bottom edge of the dialog, instead of the usual top or left.

The dialog editor understands relative dimensions when reading
dialog_definition_files, but doesn’t preserve them when writing them, so it’s best
to add relative dimensions to a dialog_definition_files only when you’re done
using the editor on it.

Relative dimensions are illustrated in the sample script
dialogPluginDemo2.powerpro.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 131 of 260
page 131 of 260

11.11 <right_click_command>: Context Menus
If present, in a define_control or define service call, specifies a command to
run when user right clicks (on control or space in dialog outside any control)
Typically the command would be a call to a script which would cause a
PowerPro menu to appear, thus simulating a context menu, e.g. using
menu.show or cl.ShowMenu.

If you invoke a script, six arguments will be appended to the script call if you
right click on the control or dialog: see Section 11.5.1 “The Structure of Event-
Handling Scripts”.

The first of those arguments is <UserArg>, data provided by you. There is no
place for you to specify that data in a define_control or define service call, so if
you want to specify some, use

set_response(<target> <script_to_call>, <command_arg>,”right”).

If you specify a <right_click_command> for a scintilla, rich text edit or plain edit
control, the bad news is that it will prevent the standard edit context menu
(“Undo”, “Copy”, “Cut”,…) from appearing. The good news is that you’ll find a
replacement menu that does much the same defined as part of the
makeFormatMenu function of regexDialog.powerpro and
regexDialogScintilla.powerpro.

If the value of a <right_click_command> is

cb("@rClick")

The following function would create a menu and show it

Function rClick(sUserArg, dlgHan, iCtrlNo, msg1, msg2>, targHan)
local cLst

 if (cl.Exists("dlgEditCnxt")) do
 cLst = cl.Get("dlgRclick")
else
 cLst = cl.create("dlgRclick")
endif

cLst.removeAll
local hitem = cLst.insert(0)
hitem.AddLeft(cb("@onAction1", targHan)).setLabel("Action1")
local hitem = cLst.insert(0)
hitem.AddLeft(cb("@onAction2", targHan)).setLabel("Action2")
cLst.ShowMenu("centreundermouse")
cLst.removeAll

quit

You would of course then need to provide

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 132 of 260
page 132 of 260

Function onAction1(targHan)

Function onAction1(targHan)

to response to user context menu choices.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 133 of 260
page 133 of 260

12.0 dialog_ Variables

These are two variables set by various services: they will set one or the other,
but not both, depending on whether returns_values, returns_status, or
returns_nothing have been called, or, if none have been called, on the value
whatToReturn in dialog.ini/plugins.ini.

dialog
variable set by

dialog_statu
s
or

dialog_result

define
define_control
run
get_value (alias get)
send_message
rgb

dialog_statu
s all

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 134 of 260
page 134 of 260

13.0 The Dialog Editor

It's called DialogEditor.exe. Creative, huh? It reads dialog_definition_files and
displays the dialog layout they specify, which you can edit and save.

Please treat DialogEditor.exe as a beta. Make a backup of any
dialog_definition_file you run through it.

The purpose of the dialog editor is to allow you to create and edit
dialog_definition_files graphically, primarily so you have a WYSIWYG tool to
visualise control layout. It only allows you to alter a few dialog and control
properties in addition to their size and position.

13.1 Configuration

The dialog editor has an ini file, in the same folder as DialogEditor.exe, sensibly
called DialogEditor.ini. If your configuration ini file (dialog.ini or plugins.ini)
contains the keys defaultFieldSeparator or defaultEvaluationMarker, you
must have the same keys with the same values in the [DialogEditor] section of
DialogEditor.ini. If you don’t do this, your dialog_definition_files won’t make
sense to the editor.

In the same ini file,. the key defaultFileType determines the default file type for
File | Open, File | Save and File | Save As menu items. The key value can be of
any length, but only the first character counts: i for ini (the default if the
defaultFileType key is absent) , t for text files.

Incidentally DialogEditor.exe modifies the registry at

HKEY_CURRENT_USER\Software\PowerPro\Dialog Editor

to keep the MRU: a MFC rigidity that I can't be bothered to override.

13.2 Loading and saving dialogs

Dialogs can be loaded from or saved to text or ini files, as described above (see
dialog_definition_files). (I may get around to loading and saving a dialog in the
form of a powerpro script eventually).

If a file without an .ini extension is opened in the dialog editor, it will be treated
as a text file; if the file has an .ini extension, that’s how it will be parsed.

You can drop a file onto the editor to open the file.

Once a file is open, if it's modified externally (by e.g. a text editor) you'll be
warened and asked if you want to reload.

On saving, the file format to save to is determined by extension: if you save to a
file ending .ini, you get that; any other (or no) extension gives you a one-line-
per-control text file.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 135 of 260
page 135 of 260

You can open a file in one format and save it as another.

If you save an existing file, a *.bak backup will be created; any previously
created *.bak file of the same name will be deleted.

The dialog editor understands relative dimensions when reading
dialog_definition_files, but doesn’t preserve them when writing them. And it
remembers resizing postfixes when reading dialog_definition_files, and
preserves them when saving.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 136 of 260
page 136 of 260

13.3 Editing dialog properties

The editor doesn't display a titlebar for your dialog, but there is one: I just
haven't worked out how to simulate it in the MFC document.

Only a few dialog parameters are editable (from the “Dialog | Properties" menu
item, or the toolbar, or double-clicking on any part of the dialog area not
occupied by a control)) – the primary being position, size and title. But any
other parameters you've added manually to an ini or text file will be preserved
when you subsequently save changes.

If a parameter contains an evaluation marker (normally “#”), it’s an expression,
and the editor can’t access it’s true contents, so the relevant field(s) in the
properties editing dialog will be disabled (e.g., if the <style> field contains an
evaluation marker, all the style check box controls will be disabled.).

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 137 of 260
page 137 of 260

13.4 Editing controls

Add new controls from the "Controls" menu. Control types I haven’t yet
implemented in the dialog plugin are greyed out.

You can also add controls using the keyboard shortcuts indicated on the menu
for the some control types, or the toolbar.

You can move a control once they're placed by dragging with the mouse, or
you can nudge it around with the arrow keys.

You can resize a control, once selected, with the sizing handles.

From the "Drawing Aids" menu, you can show or hide the drawing grid and
margin; whether controls snap to the grid or margin; and their sizes. If you
change any of these settings, your changes will be saved to the DialogEditor.ini
file and will come in to forcer next time you run the editor.

You can cut, copy, paste and delete controls from the "Edit" menu, by using the
conventional accelerator keys, or via the toolbar.

You can undo actions from the menu and with <ctrl>Z.

You can select groups of controls either by rubberbanding around them with the
mouse, or <ctrl>-left clicking on them. You can them move the group by
dragging with the mouse.

If more than one control is selected, you can line them up in various way from
the Layout menu.

if several are controls selected you can’t resize them, nor can you edit their
properties.

You can edit a few properties of each control (double click on the control; or
context menu, "Properties"; or "Layout" menu, "Properties").

• You can change the control name (only useful if you want to refer to the
control in your script).

• You can set the text of buttons, check box controls and radio buttons.

• You can add or remove styles which apply to all controls: "3d", "border",
"notab", "group" and "hidden". Checking or unchecking "3d" or "border" will
update the appearance of the control in the editor

But: if a parameter activated from a file contains an evaluation marker (normally
“#”), it’s an expression; the editor can’t access it’s true contents, so the relevant
field in the properties editing dialog will be disabled.

If you save a dialog which was originally loaded from a file, any control
parameters specified in that file that aren’t visible in this editor will be preserved.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 138 of 260
page 138 of 260

13.5 Running dialogs

A dialog can be run through the dialog plugin (from the "Dialog" menu) either

Running a dialog on it's own (keyboard shortcut: Shift-F5):
The variables dialog_status and dialog_result will be declared as a global
variables before the dialog is run.

Some simplifications have to be made:

• Any dialog or control parameters that contain an evaluation marker will
be ignored.

• So will any variable names in the <text_or_var> parameter, since I can't
know what context the dialog is mean to run in, and therefore can't
determine what variables there might be and what values they might
have.

• Any < script_to_call > you've defined will be ignored.

You can close the displayed dialog either:

• by choosing the same Dialog menu item (which changes text to
"Terminate Dialog"), or:

• by hitting Shift-F5 while the editor has focus, or;

• by simply closing the displayeddialog via Ctrl-F4 or the X- caption bar
icon.

Running a dialog through a script (keyboard shortcut: F5):
With dialog_definition_files of some complexity, you will almost certainly have
included expressions with evaluation markers and references to
<scripts_to_call> which are dependent on the dialog running from a particular
script. If you chose this option, a dialog pops up and asks you to pick a script
to use. If you've run the same dialog_definition_file through a script before,
the editor will remember (via the dialogEditor.ini file) and propose the same
script again.

If you have PowerPro 4.5.02 or later, the complete path to the script you've
chosen will be passed on to PowerPro, using Bruce's new call function. If
you're using an earlier version, only the script's name will be passed (using
the ".scriptname" syntax), so it better be on your scriptpath. So, if you want to
try opening dialogPluginDemo.txt or dialogPluginDemo.ini in the editor, and
then running them through dialogPluginDemoFromConfigFile.powerpro, the
latter must be on your scriptpath (as must all it's associated image and icon
files) if you use a version of PowerPro earlier than 4.5.02.

The path to the dialog definition file will be passed as the first argument to the
chosen script, so the script must be coded to deal with arg(1) as that path..

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 139 of 260
page 139 of 260

13.6 Editing dialog definition files as text

You can edit dialog and control properties directly by invoking the Edit Script
menu option ("Dialog menu"; keyboard shortcut: Control-F5); this will freeze the
dialog editor, bring the dialog definition file you're working on up in your text
editor, and only return to the dialog editor when you close the
dialog_definition_file in your text editor.

To make this work you have to provide a powerpro script to manage the transfer
between dialog and text editors. Three samples are provided:
dialogEditorToNotepad.powerpro, dialogEditorToWordpad.powerpro and
dialogEditorToUltraEdit.powerpro (which probably works, with minor mods, with
Crimson Editor – see comments within).

You must name the script which you use via the textEditorScript key in
dialogEditor.ini; if you have PowerPro 4.5.02 or later the script can be anywhere
and textEditorScript can specify an absolute path; if you don’t give an absolute
path, the script must be on your scriptpath. You can include or omit the
.powerpro extension.

The script must be able to determine if a particular file is open in your text
editor, and whether, when it's closed in that editor, it's been modified. It must
call a dialog plugin service (editor_support) whose only purpose is to interact
with the dialog editor. Hopefully the dialogEditor*.powerpro scripts are well-
enough commented so you can roll your own from them. Notepad is dead easy;
ultraEdit and other more sophisticated MDI interfaces are somewhat more
difficult. Wordpad requires accessing the registry to get wordpad.exe's location,
and massaging the result.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 140 of 260
page 140 of 260

14.0 General Restrictions

Don't use any owner-drawn styles in a control.

15.0 Possible Enhancements

Tooltips don’t work in XP if the powerpro manifest file (powerpro.exe.manifest)
isn’t present. Will try and fix.

Quite a lot of stuff probably missing for listviews; I'll add more in subsequent
versions. In particular there's no get_value implemented yet; no named
messages; tooltips probably need work.

Colours currently don't work for combo box controls or the thumb on sliders.. I
can work around this by making them owner-drawn and may do.

Tooltips don’t work for treeViews; I’ll look into supporting them.

<ctrl><tab> doesn’t navigate properly in tab controls; I’ll try to fix.

I'll probably add an export service to dialog plugin, so you can create dialog
definition files from scripts.

The resizing algorithm is inaccurate. I'll improve it.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 141 of 260
page 141 of 260

16.0 Change History

version 1.19:

• Changed parameters to choose_font allowing a <font_spec> instead of
a <target>, and variable name to be specified to set and return colour.
choose_font now used in controlFontChanger.powerpro.

• set_font applied to <window_handle> now returns the HFONT
associated with the window after set_font runs.

• Added a variant to clear service allowing deletion of font resource
referred to by an HFONT

• Fixed an error in set_font which caused PowerPro to crash if applied to
a window with the system font. Updated documentation for set_font to
describe more accurately when it works and when it doesn’t when
applied to a <window_handle>.

• Fixed a bug in choose_font which caused to initialise the font picker
dialog with garbage when <target> is a <window_handle>.

• Added to documentation for get_value(<window_handle>, “font”) variant;
usually doesn’t work on anything but controls

• Added variant of get_value with <property> “fonth” or “fonthandle”

• set_response now has <mouse_event>s "enter" and "exit" (to specify a
response to make when mouse enters a control's window, or leaves it).

• For statics, if you invoke set_response to set a response to a
<mouse_event>s; or set_colour with a <mouse_state>; The "notify"
(SS_NOTIFY) style will automatically be added to the control's styles.
Example of static with both a set_colour and a set_response to make a
static with a clickable url can be found in dialogPluginDemo7.powerpro.

• Added pdf version of documentation

• Fixed memory leaks in GDI and other resources (thanks to Sheri Pierce
for locating them). There are more leaks, will try to plug them in the next
version.

• Tooltips don’t work in XP if the powerpro manifest file
(powerpro.exe.manifest) isn’t present. Will try and fix.

version 1.18:

• changed the first <type> parameter of browse_for_file service to
<type_and_options>, and added numerous flag keywords.
<type_and_options> is now required, not optional.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 142 of 260
page 142 of 260

• forgot to document trailing parameter to browse_for_file service call
<defaultFileName>.

• added trailing parameter to browse_for_file service call
<varNameROstate>.

• added code to return multiple file selections from browse_for_file service

demo file browse_for_file.powerpro.

version 1.17:

• fixed error in show service: when applied to a control, didn’t return the
control's handle (it returned the dialog's handle instead).

• clarified behaviour when you call a service that returns a
<handle_to_control> with multiple control ids; service will return the
handle of the first control id encountered.

version 1.16:

• fixed inconsistency in handling clicking on the X-icon in the dialog
caption bar, or on the “close” option in the control menu to close a
dialog. Now works as defined in docs.

version 1.15:

• Fixed error in docs and behaviour re control tooltip widths; you either
prefix the <tooltip_style> with a width, or include width:nn.

• left and right arrow keys will now navigate between tabs of a tab control
which has focus. ctrl-tab should rotate through tabs but doesn’t yet

version 1.14:

• Updated docs re control tooltips: problem with no-shows when manifest
in operation apparently gone

• Updated docs re set_tooltip for control tooltips: weird problem with
shadow appearing appears if you call set_tooltip after create when
manifest in operation. Workaround: call set_tooltip before create, or
don’t use the manifest.

• Added a variant of get_value (alias get) that will return the text in part of
a statusbar. Also get_value now works with external statusbar controls
(those on other windows besides those generated by this plugin).

• Added to set_value for statusbars allowing multiple parts to be set in one
call.

version 1.13:

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 143 of 260
page 143 of 260

• Hopefully fixed bugs causing tooltips to disappear when a control was
hovered over for a short period, or when a control was clicked.

• Fixed bug in set_value for listview with keyword "row".

• Tightened rules for set_value for listview; you have to set the row
(“item”) label before you can set values for “subitems” (columns)

• Fixed bug in set_value for treeview which meant insertion of a node
under another wasn;t working.

• Added new script notificationDialog.powerpro demonstrating use of a
dummy dialog to pop up a balloon notification tooltip from the taskbar.

• Control tooltips now default to opening after your system double-click
time, then staying open forever as long as you hover over the control

• Added tooltip pseudo-styles "slashisnl", "showafter" and "stayopen"
Added to writeup for the <delay> parameter of set_tooltip for controls to
take the latter, and a problem in XP SP2, into account.

• Statics can now have tooltips (via set_tooltip for controls or
define_control)

version 1.12:

• Another bugfix: define_set failed. A lot.

version 1.11:

• Oh dear. This version is just a bugfix. On XP dialog plugin version 1.10
tried to cope with Visual Styles and failed miserably, and managed to
screw up your system-wide Visual Styles at the same time.

version 1.10:

• Tightened up rules for value of the <show_type> parameter of the show
service, so that controls only accept “show”, “hide” and their synonyms,
not the other dialog-oriented possibilities.

• Again for the show service, added the <show_type>s “traymin”,
“trayicon” (and a bunch of arguments to follow) for dialogs, so dialogs
can now display an icon in the system tray (not necessarily the one
assigned to the dialog).

Calling dlgHan.show(“traymin”) will hide the dialog as well as creating
the tray icon.

dlgHan.show("traydel") will kill the tray icon.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 144 of 260
page 144 of 260

You can assign an action to a tray icon using the <script_to_call>
argument of the show service; you can use cl services to make that
action showing a menu.

• You can set the colours of a control's tooltip with set_tooltip and
set_colour…

• …but Sheri Pierce notices that there’s a problem using tooltips and XP
visual styles

• You can use set_tooltip to set a tooltip on a tray icon created with the
show service, and to display a balloon-style, notification tip from the tray
icon on request.

• set_tooltip , if used to set a balloon tooltip’s properties, can have a
further parameters, <title> and <icon>.

• set_tooltip <delay> parameter can be used to set a tooltip’s delays.

• You can use set_response to set or change actions associated with
mouse clicks on the tray icon.

• For dialogs you can specify <sys_command>s for set_response,
allowing you to respond to stuff like user closing, moving, resizing,
minimising and maximize the dialog.

• the <name> parameter of define_control is subject to tighter rules; must
be be of 2-63 characters in length, must begin with an alphabetic
character, and must not be the same (case insensitive) as any of the
<show_type>s allowed for the show command applied to a dialog

• There can now be only one control with <id> (set as a parameter of
define_control) of “escapable” or “cancel”; one precludes the other.
You can also get the same effect as “escapable” by creating a button
with <id> of “cancel” and with the “nodestroy” style.

• I thought tooltip text could only have explicit line breaks if you specified
<width> as part of <tooltip_style>. Turns out, not so. And since “\n”
works fine as a line break in a tooltip, I’ve removed the rule that line
breaks are marked by “/”. That means if you want a tooltip with line
breaks, you can’t define it in a <dialog_definition_file>; you’ll have to use
set_tooltip instead.

• Clarified discussion of <action_on_close>.

• Added "prevctrl" property to get_value applied to dialogs, and “owner”
applied to controls and dialogs created modal and with an <owner>.

• Updated dialogPluginFunctions.txt to match above changes

• Improved specificity of error messages to do with bad parameters.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 145 of 260
page 145 of 260

• Finally got around to fleshing out handling script (“onLV”) for the listView
in dialogPluginDemo5.powerpro; it now reports any time a new row is
selected in the control.

• Fixed bug in get_value for listviews with keyword "selectedindex"

version 1.08:

• added discussion Multiple Simultaneous Dialogs From The Same Script
and Enforcing a Single Instance of a Dialog from a Script

• added a new value for the <id> parameter of define_control,
“escapable”, which will trigger when user hits <escape> but not <alt-F4>
or any of the other ways of closing a dialog, and won’t presume user has
destroyed the dialog; also clarified description of <id>. See
dialogPluginDemo1.powerpro for example of usage.

• You can now specify <script_to_call> and <command_arg> arguments
for a tooltip.

• dialogPluginDemo8.powerpro illustrates the dialog style "draggable", the
button image-related style "imgfill" and use of a <script_to_call> for a
tooltip.

version 1.07:

• removed aliases set_icons, icons, add_icon, add_icons for set_icon
(which only applies to the dialog, not to controls, so there can only ever
be one)

• finally fixed (I think) peculiar concentric rectangles appearing when
tootips specified for controls

• Previously, set_tooltip only worked if a tooltip had been specified when a
control was defined. Now that's no longer required: you can create a
tooltip on the fly. Also, set_tooltip takes optional <tooltip_style> and
 arguments. And you can use the same service to kill off a
control's tooltip.

• Added dialogPluginFunctions.txt to be used as a file menu, perhaps
merged with pprofunctions.txt.

• There were errors in dialogPluginDemo.ini and dialogPluginDemo.txt, so
the sample script dialogPluginDemoFromConfigFile.powerpro didn’t
work right

version 1.05:

• Added dialog styles "toolwin", "tool" and "topmost"

• Added "dialog style" "draggable"

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 146 of 260
page 146 of 260

• Added a button image-related style "imgfill"

• Added the “reset” and "find" messages for combo boxes

version 1.03:

• I left out the dialogPluginDemo.ico file in the last distro. Sorry.

• dialog.set_colour now works for scintilla controls, including keyword
arguments allowing controls to have different colours depending on
whether they’re pressed, have focus, or have the mouse over them..
Try the edit boxes in dialogPluginDemo2.powerpro and the edit boxes
in regexDialogScintilla.powerpro.

• Added additional valid keywords for the <mouse_event> parameter of
set_response allowing discrimination between left and right modifiers.

version 1.01:

• All sample scripts now use cbx() for callbacks instead of cb(), and
therefore require at least PowerPro 4.8 RC3.

• Minor fixes to regexDialog.powerpro and
regex\regexDialogScintilla.powerpro scripts, including inability to see
selected text highlighted in the latter.

• Added keyword arguments to set_colour service, allowing controls to
have different colours depending on whether they’re pressed, have
focus, or have the mouse over them.

• Changed the names of supporting files (.powerpro, .txt, .ini, .ico) from
dialogPluginTest* to dialogPluginDemo*

• The colour parameters in define_control for a month-calendar and date-
time controls now work.

• In both dialog.define_control and dialog.set_colour, the <foreground> for
date-time, month-calendar, treeview and listview controls can be either a
number (possible generated by dialog.rgb) or a colour name, in which
case it will be interpreted as a foreground-ish colour; or it will be a
keyword specifying the colour aspect of the control you wish to set.

• dialog.set_colour now works for status controls (still background colour
only though, and still ugly).

• dialog.set_colour can now be invoked before a dialog is created or run,
though I'm not sure why you'd want to

.version 0.97:

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 147 of 260
page 147 of 260

• Fixed bug meaning some get_value <type> s, in particular "rtf" for rich
edit controls, didn’t work

• Fixed "wrap/don't wrap" bit of context menu for regexDialog.powerpro

• In this documentation, changed get_value <type> to get_value
<property>; same for set_value.

version 0.96:

• Fixed a bug that meant last argument sent to functions handling mouse
actions was wrong (it was always the handle to the target dialog, not the
handle to target control, if any)

• Fixed a bug that meant static variables preceded by the evaluation
marker wouldn’t be recognised.

• The "imgspacing" style for buttons can be negative; that will overlap
graphic and text, which may work if the graphic has a substantial
transparent background.

• Added internal fixes in way the window receiving a mouse action is
identified; should be faster and more reliable, but I bet change won’t be
observable.

• get_last_clicked now returns the handle to any the last control or dialog
which responded to a user action, not just funny mouse actions like
right-click.

• scintilla , rich text edit and plain edit controls can now be assigned a
<right_click_command> with define, define_control or set_response,
overriding the built-in context menus (or, in the case of rich text edit
controls, the default context menu the plugin supplies).

• I forgot to document the get_value <property>s "selectlen", and
"selected" or "select" for scintilla, rich text edit and plain edit controls.

• Added the get_value <property> “type” for all controls

• Changed name of button style equivalent to BS_FLAT from “buttonflat”
to “flat”.

• I'm working on interpreting “flat” button style to mean the fancy kind of
flat button that gets a border when you hover over it. Work in progress,
not yet done – and I may add a new style ("cool" ?) that's different from
plain old flat buttons.

version 0.94:

• fixed a bug that mean same dialog run twice wouldn't cancel. Sorry
about that.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 148 of 260
page 148 of 260

• dialog editor supports animation controls.

• Added "imgspacing" style for buttons

version 0.92:

• define <height> and <width> may be prefixed by "+"; in which case
dialog dimension will be large enough to contain all controls (given their
dimensions) plus the quantity after the "+"

• The <max_controls> of the define service and its equivalent in a
dialog_definition_file is now irrelevant; there is no intrinsic limit on the
number of controls in a dialog. I'll continue to parse for the parameter,
but will ignore it, and it's been removed from the documentation.

• define_control now returns a handle to a control, not a control id.

• Added define_set service to allow sets of controls to be used as if they
were themselves controls (for some services only).

• <name>s in calls to define_control must be less than 63 characters
(used to be 50); you get an error it they’re longer.

• <ctrl_ids> can now, for some services (ones that change controls, but
don’t fetch their properties), be made up of multiple, white-space
separated control names or numbers.

• Added "select" (or anything beginning "select") as a <property>
parameter for get_value for scintilla, rich text edit and plain edit controls

• Added functionality to set_response to allow specifying actions when
mouse events (other than simple left-clicks) occur on controls or the
dialog.

• The scripts that responde to such mouse events (or the one specified in
the parameter (<right_click_command>) now take the same parameters,
more or less, as any event-response script.

• For set_response, if using the <dialog_handle>, <ctrl_id> option,
<ctrl_id> may be absent, indicating you wish to set a response for the
dialog itself.

• Added service get_last_clicked

• Fixed get_value("font") directed at dialog as a whole with no font defined
by user.

• get_value takes new <property>s “hwnd”, “id” and “name”; the latter two
only valid when directed at a control, the first valid for a control or the
dialog as a whole. Using a <property> of “hwnd” is the same as calling

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 149 of 260
page 149 of 260

get_hwnd; using a <property> of “id” is the same as calling
get_control_no.

• …therefore removed services get_hwnd and get_control_no.

• The <dialog_handle>[<ctrl_id>, <property>] syntax works nicely in
place of get_value (in previous versions I said it didn’t); so does
control_handle>[<property>].

• Added new dimension prefixes to allow delta as well as proportional
resizing of controls when a dialog is resized. See Section 11.10.3,
"Resizing dialogs", and the illustration in dialogPluginDemo7.powerpro.

• the X or Y arguments in any call to define_control or set_position can be
prefixed by ">" or "_", meaning they should be taken as a distance from
the right or bottom edge of the dialog, instead of the usual top or left.

• buttons can now have images (set with set_image)

• buttons with colours or images now display and behave properly when
disabled, and when they have "left" or "right" styles.

• For all types of controls to which it applies, if you invoke set_image with
no arguments it will remove all images from the control in question.

• Added animation controls that can play avi files (and not do anything
else).

• Fixed some details of named messages for sliders, e.g.
TBM_CLEARSEL and TBM_SETTIC

• The <icon_number> argument of the set_image service now is either 0
or 1 based depending on the indexBase key in the configuration ini file
(dialog.ini or plugins.ini) or on the last call to set_base..

• The decimal separator in the <point_size> element of a <font_spec> will
vary with your locale, e.g. it may be a comma in many eurolands (see
Section 11.9 "Fonts: the and <font_spec> parameters")

version 0.90:

• Fixed an error in get_value that, if applied to non-plugin controls,
causing them to disappear.

• Added "all" and item index, and other options for get_value service
applied to listboxes and combo boxes.

• Added a context menu to rich text edit controls.

• Added yet another parameter (<right_click_command>) / ini file key
(commandMouseAction) to define_control and define services. You can

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 150 of 260
page 150 of 260

now specify a script to run you right click on a control or dialog (which
would normally simulate a context menu using e.g. cl.ShowMenu). Try
the dialogPluginDemo1.powerpro, "Text To Debug Win" button.

• Fixed minor problems in regex.powerpro sample script. I'm working on
moving the menu triggered by the Options buttons into context menus
for edit boxes in the regex sample scripts.

version 0.88:

• Probably fixed problem with dialogs containing activeX controls crashing
PowerPro on exit.

• …and another, where dlgHan.get_hwnd() crashed

• For listViews, get_value(<target>, "selectedAllIndex") is now
get_value(<target>, "selectedIndex" [, <howMany>]) with <howMany> -
1

• Corrected documentation for listViews set_value(<target>, "item",

• Tightened up rules on effects of the configuration ini file key indexBase,
and of the set_base service; documentation notes effects wherever
relevant

• Added get_base service. All scripts that require set_base(1) on entry
now revert to current base if required on exit.

version 0.86:

• Fixed error in get_value with “font” tag.

• Added a new key to the configuration ini file (dialog.ini or plugins.ini)
indexBase, and set_base service, both of which effect various services
that specify elements with an index (clear, and variants of get_value and
set_value for listviews, combo boxs and list boxs, and for the latter, tab
controls. All scripts updated by calling set_base(1) for safety.

• Scripts that use any of those controls now set_base to 1, and restore it if
was previously 0.

version 0.84:

• Fixed bugs in which services prevents from running when using
<handle_to_control> s with minimum number of arguments.

version 0.83:

• Dialog title now not forced into lower case.

• <handle_to_control> s no longer have memory associated with them, so
they never need to be destroyed or localcopy'd.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 151 of 260
page 151 of 260

• Fixed a bug in handling of chained service calls that sometimes caused
PowerPro crashes.

• set_position rules tightened up; if <target> absent or zero, implying
you're resizing the dialog, all dimension arguments must be present.
And fixed bug in relative dimension processing in set_position.

version 0.81:

• Fixed set_position; now works…and if you’re using separate arguments
for each dimension, all but the first (X) are optional. Should work before
and after create (that’w what docs always said, but you don’t really
believe what I say, do you??).

• Fixed set_colour; now works for buttons; still not working for statusbars.

• Fixed buttons with both font and colour; now does the font, instead of
(sob) ignoring it.

• Added "Z" relative dimension modifier, making a dimension zero ("0" is
taken as "just like previously defined control's dimension").

version 0.79:

• Some services that take a dialog handle and a control id as first
arguments can take instead a window handle to a control, and that
control can live in some dialog or window not created by the dialog
plugin. For instance get_value, set_value, set_font, enable, set_position,
and show now allow that possibility. New test script
dialogPluginDemoNonNative.powerpro added to demo some of the
possibilities.

• Added lots of variants to get_value and set_value applied to listview
controls. You can among other things set and get listview’s current
selection and focus, and get the whole or part of a listview returned in a
vector. Many of those variants work for listviews in other dialogs, which
meams they cover much the same territory as autotIt’s ControlListView
or autoHotkey’s ControlGet.

• added alias release for destroy

version 0.77:

• Added a new section: How to Use the Dialog Plugin to Manipulate Non-
Plugin Dialogs and Their Controls.

• Changed the signature used by <handle_to_control>s; previous one
conflicted with one used by the COM plugin.

• Fixed (at least partially) resizing algorithm; at least controls move
around more or less correctly when you drag a dialog bigger and

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 152 of 260
page 152 of 260

smaller. Illustrated in dialogPluginDemo2.powerpro and the regex
dialog scripts (text files slightly modified, to take advantage of resizing).

version 0.74:

• Syntactic sugar, catching up with Bruce's cl services; you can now chain
services which operate on controls and don’t return values useful: e.g.
those services named set_* and some others.

• The regex samples used to have a separate file for the viewer window;
now there's just one powerpro script for each of the two regex sample
varants.

• enable and focus can now be applied to a dialog as whole, as well as to
a particular control.

• enable , focus, show, set_font, set_position, get_hwnd, set_value and
get_value can now omit the <ctrl_id> argument, in which case the
service applies to the dialog as a whole (which previously required
instead a <ctrl_id> value of zero).

• Fixed bug in parsing ini <dialog_definition_file> file files. In particular,
the bug ensured that any ini file generated by the dialog editor would
crash Powerpro. Duh.

• Added get_value service for list view controls.

• Added test script dialogPluginDemo6.powerpro that demonstrates use
of get_value for list view controls, and presents athe results of a
database query in a list view.

• Added <state> parameter for set_value service of list view controls

• Improved regex dialogs

• SciLexer.dll is required for scintilla controls. In previous version it had to
be in the PowerPro folder or on the path; now it can also be in the
plugins folder.

• scintilla controls now accept all named styles and messages appropriate
for rich edit controls. There's a "but" for messages; see scintilla section.

• I've begun adding space in named message tables for a brief
description of each message's purpose. For the moment most of that
new, last columns of each table is empty; I'll be filling them in eventually.

• <dialog_handle>s stored in locals were never meant to be automatically
deleted when the local when out of scope. They were. Now they aren't

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 153 of 260
page 153 of 260

• The distribution zip file now has a folder structure; make sure you
preserve that structure when unzipping it . (It only really matters for test
scripts.)

• Fixed really obscure bug involving <handle_to_control>s returned by
calls to dialog.make_ctrl_handle in one dialog disappearing when a
second dialog was destroyed.

• Added browse_for_file service to bring up file open and file save
common dialogs.

• If you use set_font specifying only some properties of a font (font size,
for instance, or weight), plugin will endeavour to preserve some existing
font properties.

• set_font accepts any <window_handle> as a first argument, so you can
alter the font used by any (??) window or control.

• set_font now works with richedit and scintilla controls, with some
restrictins on the latter.

• The choose_font service now takes parameters allowing you to specify
a dialog, control or window whoe font should be used to initialise the font
choice common dialog.

• get_value takes a <property> of "font"; that works with a handle to a
window as well as a window to a control.

• Rich edit controls only send out notifications if a mask is set to tell it so.
I've added code to automatically take care of that for a subset of
possible notification codes.

• added "setcursor" named messages for combo boxes and list boxes

• Added controlFontChangerTest.powerpro and
controlFontChanger.powerpro to illustrate manipulation of properties of
controls in dialogs not generated by the dialog plugin.

• Finished off descriptions for tab control styles

• I've added a note in the description of each type on control indicating
which sample script(s) it's used in.

version 0.72:

• In last version I said I got "setcharformat" and the like to work for rich
edit controls. I lied. Sometimes it works, sometimes it doesn't. Seems
to depend on what else is open. scintilla controls seem more reliable.
Meanwhile I've added a switch (st_bHighlightingWorks) in that alters
behaviour of regexDialog.powerpro, depending on what works for you.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 154 of 260
page 154 of 260

• added regexDialogScintilla.powerpro and regexDialogScintilla.txt to
demonstrate use of scintilla control.

• The <script_to_call> argument in define_control and the
<action_on_close> parameter of the define service can refer to
command lists withon your pcf. See Section 11.5 “Script Calls and Their
Arguments”.

• Added choose_font service, which brings up the font common dialog.
Its output can be used in the <font_spec> parameter of set_font, define
or define_control.

• Added support for list view, rich edit and scintilla controls in the dialog
editor.

• Added lots of named messages for list view controls

version 0.70:

• set_value for both rich edit controls and plain edit controls now checks
to see if the maximum length of text for the control is exceeded, and if
possible increased that limit. As a result the named messages "limittext"
and "exlimittext" have been removed.

• added <flags> and <codepage> argument to set_value for rich edit
controls. As a result the named message "settextex" has been removed.

• removed "usectf" style for rich edit controls

• got "setcharformat" and the like to work for rich edit controls .

• send_message now assumes the <lParam> parameter is of integer type
if it isn’t told otherwise (i.e. by the <lParam_type> argument or the
information carried by a named message). It also has a new, optional
parameter to force a control to be redrawn after the message has been
sent

• added basic support for scintilla controls

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 155 of 260
page 155 of 260

version 0.67:

• Added support for listview controls, illustrated in sample script
dialogPluginDemo5.powerpro. listview documentation and the
get_value method are incomplete, and I haven’t defined any named
messages yet.

• Added support for rich edit controls; but I haven’t managed to get text or
paragraph formatting to work yet; it I can’t, I may switch to the scite

• Added named messages applicable to both standard and rich edit
controls.

• added aliases add_icon and add_icons to service set_icon

• added the clear service (alias remove), which can be used to removed
tabs from tab controls; nodes from tree view controls; rows or columns
from list views; lines from combobox or list controls.

• …which means it was sensible to remove the forms of set_value
dialog.set_value(<dialog_handle>, <tab_ctrl_id>, "delete", <tab_no>)
dialog.set_value(<dialog_handle>, <tab_ctrl_id>, "deleteall")
dialog.set_value(<dialog_handle>, <treeview_ctrl_id>, <node_id>,
"delete")
dialog.set_value(<dialog_handle>, <treeview_ctrl_id>, "deleteall")

• fixed error message when you try to use a dialog_definition_ini file and
the plugin can’t find the ini plugin.

• if an <lParam> argument of a named message used in send_message
is "string", you can now specify the name of a variable, whose
allocatedmemory can then be used as a buffer to receive data from the
target of the sent message.

• The <owner> parameter of the create and run services (used to create a
modal dialog) can now be a handle to any window, as well as being a
dialog_handle.

• When sending a message to a control, the <wParam>parameter can by
a handle to a struct or array (as returned by the create_struct or
create_array services of the dll plugin)

• Added dialogViewer.powerpro, a simple dialog that can be used to
display text in an edit box. See 9.2.6.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 156 of 260
page 156 of 260

version 0.61:

• Added aliases for some services

• Added dlgHandle[<ctrl_id>] as synonym for get_value and set_value

The above changes are illustrated in the sample script
dialogPluginDemo1.powerpro.

• Added support for tab controls, including numerous variants set_value to
configure them, and set_image to allow adding multiple images to the
control's image list.. Illustrated in sample script
dialogPluginDemo4.powerpro.

• dialog editor supports tab controls.

• Improved visuals for various controls in dialog editor, so you can now tell
them apart more easily.

• Now handles (some) notifications that come in with WM_NOTIFY as
well as with WM_COMMAND.

• Images loaded into a static control with set_image will now be
automatically resized to fit the control.

• Added skeletonDialog.powerpro, skeletonDialog.txt, skeletonDialog.ini,
to give you a very simple, two-button dialog to start from.

• Icon numbers for icons embedded in dialog.dll now 1-based instead of
0-based

version 0.57:

• Fixed bug that meant running same dialog repeatedly intermittently
crashed PowerpPro

• You can now control what happens to controls when a dialog is resized.

• A control's position and size can be specified relative to a previously
defined control

• added set_position service

• You can merge <X>, <Y>, <width> and <height> parameters in calls to
define, define_control and set_position services into a single
<dimensions> parameter.

The above changes are illustrated in the sample script
dialogPluginDemo2.powerpro; in addition single <dimensions> parameters
are illustrated in dialogPluginDemo.ini and dialogPluginDemo.txt
<dialog_definition_file>s.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 157 of 260
page 157 of 260

version 0.55:

• send_message parameter <lParam_is_string> renamed <lParam_type>

• send_message <lParam> can be a handle to a composite (array or
struct) obtained from the dll plugin.

• …which means that I've been able to define named messages for date
pickers and month-calendar controls that make use of such composites;
so for instance you can now more easily restrict the date range of such
controls, and deal with a set of selected dates in month-calendar
controls

• get_value works for a month-calendar control with the "multiselect" style; it
returns two dates, separated by a space.

• added support for statusbars. They can have tooltips, size grips, and
multiple parts.

• set_colour now works for date picker and month-calendar controls

All the above changes are illustrated in the sample script
dialogPluginDemo2.powerpro

version 0.53:

• Fixed bug in get_value for check box controls and radio buttons

• The get_value service has optional <property> parameter; for any
control with a tooltip, <property> beginning “tool” causes service to
return tooltip text. When used for check box controls, radio buttons or
three-states, <property> beginning “text” gets control text instead of it’s
state.

• The set_value service now by default returns the state of a check box,
radio button or three-states. The service’s optional third parameter may
be <property> for such controls; if it begins “text”, service set’s the
control’s text instead of it’s state. Illustrated in
dialogPluginDemo1.powerpro

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 158 of 260
page 158 of 260

version 0.51:

• added <tooltip> and <tooltip_style> parameters to define_control service
and to control-defining entries in <dialog_definition_file>s. Example
tooltips are displayed on top three buttons displayed by
dialogPluginDemo1.powerpro.

• added set_tooltip service, which allows on-the-fly changes to existing
tooltips

• added a <tooltip> parameter to set_font service, allowing fonts of
tooltips to be changed.

• Fixed a problem where running same dialog repeatedly sometimes
crashed PowerPro.

• When specifying a font: stock fonts can now be modified with point size
and type attributes like bold and italic. You don’t have to provide any
font name, just point size and/or type attributes. See Section 11.9
"Fonts: the and <font_spec> parameters".

• Fixed bug in dialog editor that caused style codes to be repeated in
Style property output to ini or text file.

version 0.49:

• Fixed errors meaning some controls did not respond to services they
were supposed to (e.g. statics didn’t accept set_image)

version 0.47:

• Updated the dialog editor so it knows what to do with activeX controls

• Fixed errors in the dialog editor control property dialog

• dialogPluginDemo3.powerpro modified so that it may work with other
versions of Office. It needs the reg plugin to try to do that.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 159 of 260
page 159 of 260

version 0.45:

• added support for activeX controls: you can now insert a control which
contains an activeX object, and then manipulate the control using the
com plugin.

• added set_font service: you can set font of the dialog, or of a specific
control.

• added the parameter to dialog.define and dialog.define_control
services
You will have to modify calls to the latter if you used the <max_controls>
parameter.

All the above illustrated in dialogPluginDemo3.powerpro.

• dialog_definition_files now include a font parameter for dialogs and
controls.

• I think I fixed a bug that meant I sometimes got crashes after
dialog.destroy, and which I prevented by putting waits before and after
dialog.destroy calls. Hopefully those waits no longer needed.

version 0.43:

• Fixed <script_to_call> to work with new version of cb() introduced in
PowerPro 4.5.04, and to generally use call(), which allows full paths to
scripts.

version 0.41:

• There's now a dialog editor, which is mostly an aid in positioning
controls. It will read and write dialog_definition_files.

• dialog_definition_files can be ini files or (as previously) one-line-per
control text files. Both formats are supported by the dialog editor.

• set_value can now add and insert items into list controls and combo box
controls; when used for that, returns the zero-based index of the last
item added or inserted. Usage is illustrated in test script
dialogPluginDemo1.powerpro (at label @populateBox).

• Fixed all scripts to use cb() function as modified in 4.4.13.

• The variable you can tie a control to can now be static in the script that
created the dialog, as well as a global: illustrated in
dialogPluginDemo1.powerpro. Usage is illustrated in test script
dialogPluginDemo1.powerpro.

• Added 12 icons (provided by Alan Martin) into the plugin dll which you
can use as the argument in the dialog define service. Where the

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 160 of 260
page 160 of 260

<icon_path> parameter is expected. Usage is illustrated in test script
dialogPluginDemo2.powerpro.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 161 of 260
page 161 of 260

version 0.39:

• Fixed handling of closing dialog by alt<F4> or X-icon on caption bar;
now those actions cause <script_to_call> associated with the control
with <id> of "cancel" to run.

• Fixed scripts to use cb() function introduced in PowerPro 4.4.10.

• You can tie a control to a global variable by naming it in the
define_control that creates the control

• Clarified the documentation on group controls and what they contain

• Changed the way get_value works with radio buttons, check box
controls and three-states.

version 0.37:

• removed the "default" style from button controls. Use define_control
<id> parameter of "ok" instead.

• added to docs: set_image supports .wmf, .emf file types.

• set_colour can be used to set the dialog background colour

• you can set button foreground and background colours with set_colour
or the define_control <foreground> and <background> parameters.
dialogPluginDemo1.powerpro has an example.

version 0.35:

• added support for spinner, progress, slider, month-calendar and date-
time controls

• standard system icons now usable in define <icon_path> and set_image
<path_to_image> parameters.

• added the get_hwnd service to get the window handle associated with a
control

• merged get_scroll_pos and get_text services into get_value

• changed the name of set_scroll service to set_range, as it applies to
several spinner, progress, slider and scrollbars now

• changed the name of set_text service to set_value, as it applies to
spinner, progress, slider and scrollbars now

• changed name of dialogPluginDemo.powerpro to
dialogPluginDemo1.powerpro. dialogPluginDemo2.powerpro added with
examples of new features in this version.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 162 of 260
page 162 of 260

version 0.32:

• Now observes handle.service syntax if you want to use it.

version 0.30:

• First version..

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 163 of 260
page 163 of 260

Appendix I: The Windows Dialog API

To read up on dialog boxes generally:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/windowing/dialogboxes.asp

Here's a starting point on controls:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/shellcc/platform/commctls/wincontrols.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/wincontrols.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/commctls/wincontrols.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/dialogboxes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/dialogboxes.asp

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 164 of 260
page 164 of 260

Appendix II: Details on Specific Controls

II.1: Button Controls
<control_type> value: button

Used in all sample scripts.

II.1.1 Styles

In addition to styles applying to all controls, there are styles that apply
everything that Microsoft has decided are of the BUTTON class, which includes
buttons, groups, check box controls and radio buttons). They follow. No other
styles apply to yer actual button buttons.

There are a few other button-related styles, but probably none of interest. Avoid
the BS_OWNERDRAW style, it needs more support. Also no support yet for
BS_USERBUTTON, BS_ICON or BS_BITMAP.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 165 of 260
page 165 of 260

General Button Styles (including Check Box Controls, Radio Buttons,
Groups)

this style name or this
letter

#define’d
symbol means

lefttext BS_LEFTTEXT
When combined with a radio-button or
check-box style, the text appears on the left
side of the radio button or check box

left l BS_LEFT Left-aligns the text in the button rectangle
on the right side of the check box

right r BS_RIGHT Right-aligns text in the button rectangle on
the right side of the check box

centre c BS_CENTER Centres the text horizontally in the button
rectangle

top t BS_TOP Places text at the top of the button
rectangle

bottom b BS_BOTTOM Places the text at the bottom of the button
rectangle

vcentre v BS_VCENTER Vertically centres text in the button
rectangle

pushlike p BS_PUSHLIKE

Makes check box controls, three-state
check box controls and radio buttons look
and act like a push button. The button looks
raised when it isn't pushed or checked, and
sunken when it is pushed or checked.

multiline m BS_MULTILINE Wraps the button text to multiple lines

notify n BS_NOTIFY

Causes radio button to send dialog
BN_DBLCLK, BN_DISABLE, and
BN_ENABLE notifications when the
relevant event occurs.

flat f BS_FLAT
Specifies that the button is two-dimensional;
it does not use the default shading to create
a 3-D image.

flathover h - flat style, no border under mouseover

nodestroy - only valid if control has <id> of “cancel”;
same as specifying an <id> of “escapable”

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 166 of 260
page 166 of 260

The following styles apply only to buttons, and only to those with images (set
with set_image): without any of the styles below, the image set will be up
against the left edge of the focus rectangle, and the caption up against the right:

Styles Applying to Buttons with Images

this style
name means

imgright image to right of caption; if no caption, no effect

imgvert image above caption; if no caption, no effect

imgover image centred over caption; if no caption , no effect

imgfill
image fills button; if caption, no effect, unless the caption consists
of just two characters in the form "&L", in which case caption will be
hidden by full-button image, but willstill be there (and therefore the
shortcut key L will work)

imgspacing:nn
spacing between image and text set to nn pixels; if no caption , no
effect
colon is mandatory. nn may be negative, in which case text
overlaps boundary of image

imgpressedtb image moves up and down when button pressed, instead of down
and right

If there’s no caption, the image will always be centred on the button.

Note that the image alignment styles apply orthogonally to the general text
alignment styles ("left", "right", etc) listed in the previous table. So you can
have, for instance, "imgright left": image to right of caption, but the whole lot up
against right edge of the button.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 167 of 260
page 167 of 260

II.1.2 Messages and Services

The following named messages are defined and can be used in
dialog.send_message:

Named Messages for (General) Buttons (including Check Box
Controls, Radio Buttons)

this
message

name

or
this

letter
#define’d symbol

wParam
meaningf

ul

lParam
meaningful

getstate - BM_GETSTATE no no

setstate - BM_SETSTATE yes no

setstyle - BM_SETSTYLE yes no

You can use set_value to change the text on a button.

II.1.3 Colours

I think colours work ok with set_colour and define_control now..

II.2: Groups
<control_type> value: group

Used in sample scripts:
dialogPluginDemo1.powerpro, dialogPluginDemo4.powerpro,
dialogPluginDemo6.powerpro, regexDialog.powerpro (via associated
dialog_definition_file), regexDialogScintilla.powerpro (via associated
dialog_definition_file)

A group box cannot be selected, so it has no check state, focus state, or push
state.

An application cannot send messages to a group box.

To paraphrase the MSDN docs: "The first control in a group combines the
WS_GROUP and WS_TABSTOP styles so that the user can move from group
to group by using the TAB key. If the group contains radio buttons, the
application should apply the WS_TABSTOP style only to the first control in the
group. Windows automatically moves the style when the user moves between
controls in the group. This ensures that the input focus will always be on the
most recently selected control when the user moves to the group using the TAB
key." Which means, since the is applies to all controls by default, you should
apply the "group" style to the first control in a group, and the "notab" style to the
remaining ones.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 168 of 260
page 168 of 260

II.2.1 Styles

The group box has only one style, defined by the constant BS_GROUPBOX.

In addition to styles applying to all controls, there are styles that apply
everything that Microsoft has decided are of the BUTTON class, including
groups. See above.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 169 of 260
page 169 of 260

II.3: Radio Buttons, Check Box Controls, Three-States
<control_type> values: radiobutton, checkbox, 3state

Radio buttons used in:
dialogPluginDemo1.powerpro, dialogPluginDemo6.powerpro,
regexDialog.powerpro (via associated dialog_definition_file),
regexDialogScintilla.powerpro (via associated dialog_definition_file)

Check box control used in:
regexDialog.powerpro (via associated dialog_definition_file),
regexDialogScintilla.powerpro (via associated dialog_definition_file)

Three-state used in: dialogPluginDemo1.powerpro script

Three-states are check box controls that allow a third, greyed-out state.

Normally radio buttons, and sometimes check box controls and three-states are
often placed in groups. See Section II.2 above concerning the styles you
should apply to controls in groups.

II.3.1 Styles

In addition to styles applying to all controls, there are styles that apply
everything that Microsoft has decided are of the BUTTON class, including radio
buttons and check box controls. See above.

There are a few other button-related styles, but probably none of interest. Avoid
the BS_OWNERDRAW style, it needs more support. Also no support yet for
BS_USERBUTTON, BS_ICON or BS_BITMAP.

II.3.2 Messages and Services

The following named messages are defined and can be used in
dialog.send_message:
they either take or return 0 (for unchecked), 1 if (for checked/selected) and 2
(for indeterminate):

Named Messages for Check Box Controls, Radio Buttons

this
message

name

or
this

letter
#define’d symbol

wParam
meaningf

ul

lParam
meaningful

getcheck g BM_GETCHECK no no

setcheck s BM_SETCHECK yes no

There are a few other messages that can be sent to any kind of button,
including radio buttons and check box controls. See above. Use those

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 170 of 260
page 170 of 260

messages to set and check radio buttons and check box controls, find out if
they’re checked or chosen, and get their state.

You can use set_value to change the text of any of these controls.

II.3.3 Colours

Text (foreground) and background colours work as advertised.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 171 of 260
page 171 of 260

II.4: Static Controls
<control_type> value: static

Static controls are used in all sample scripts.

You can simulate a static with a clickable url by providing a set_response for a
"left" <mouse_event> and a set_colour with a <mouse_state> to simulate a text
or background change when your mouse is over the control. See
dialogPluginDemo7.powerpro for an example.

II.4.1 Styles

In addition to styles applying to all controls, there are:

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 172 of 260
page 172 of 260

Styles for Statics
this style

name
or this
letter #define’d symbol means

left l SS_LEFT

Designates a simple rectangle and displays the given text flush-
left in the rectangle. The text is formatted before it is displayed.
Words that would extend past the end of a line are automatically
wrapped to the beginning of the next flush-left line.

leftnowordwrap l SS_LEFTNOWORDWRAP
Designates a simple rectangle and displays the given text flush-
left in the rectangle. Tabs are expanded, but words are not
wrapped. Text that extends past the end of a line is clipped.

centreimage - SS_CENTERIMAGE

Use to centre an image. If the image is larger than the control, it
will be clipped; if it is smaller, the empty space around the image
will be filled by the colour of the pixel in the upper left corner of the
image.

centre c SS_CENTER

Designates a simple rectangle and displays the given text centred
in the rectangle. The text is formatted before it is displayed. Words
that would extend past the end of a line are automatically wrapped
to the beginning of the next centred line.

right r SS_RIGHT

Designates a simple rectangle and displays the given text flush-
right in the rectangle. The text is formatted before it is displayed.
Words that would extend past the end of a line are automatically
wrapped to the beginning of the next flush-right line.

blackframe b SS_BLACKFRAME Specifies a box with a frame drawn with the same colour as
window frames. The default is black.

grayframe g SS_GRAYFRAME Specifies a box with a frame drawn with the same colour as the
screen background (desktop). The default is grey.

whiteframe w SS_WHITEFRAME Specifies a box with a frame drawn with the same colour as the
window background. The default is white.

simple SS_SIMPLE

Designates a simple rectangle and displays a single line of text
flush-left in the rectangle. The line of text cannot be shortened or
altered in any way. (The control's parent window or dialog box
must not process the WM_CTLCOLOR message.)

sunken s SS_SUNKEN Draws a half-sunken border around the static

rightjust r SS_RIGHTJUST

Specifies that the lower right corner of a static control with the
SS_BITMAP or SS_ICON style is to remain fixed when the control
is resized. Only the top and left sides are adjusted to
accommodate a new bitmap or icon.

notify n SS_NOTIFY

Causes static to send dialog STN_CLICKED, STN_DBLCLK,
STN_DISABLE, and STN_ENABLE notifications when the
relevant event occurs. Automatically inserted if you invoke
set_response to set a response to a <mouse_event>s; or
set_colour with a <mouse_state>.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 173 of 260
page 173 of 260

There are other styles, allowing filled rectangles, other kinds of edged
rectangles, and treatment of text with ellipsis. See dialog-related_defines.txt:
Look for "SS_". Avoid the SS_OWNERDRAW style, it needs more support.
And for now, no support for images in statics, so avoid SS_*IMAGE styles.

II.4.2 Messages and Services

As yet I've not provided any message names for statics.

You can use set_value to change the text in a static.

II.4.3 Colours

Text (foreground) and background colours work as advertised.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 174 of 260
page 174 of 260

II.5: Edit Controls
<control_type> value: editbox

Used in sample scripts:
dialogPluginDemo1.powerpro, dialogPluginDemo2.powerpro,
dialogPluginDemo4.powerpro, dialogPluginDemo6.powerpro,
regexDialog.powerpro (via associated dialog_definition_file),
regexDialogScintilla.powerpro (via associated dialog_definition_file)

Use get_value to get text, selected text or the font description for an edit control.

In addition to the usual values of get_value <property> s, you can also use the
<property> "selectlen" to return the length of the current selection and
"selected" or "select" to return the selection itself.

Use set_value or one of its aliases (e.g. set, modify) to change the text of an
edit control.

The maximum length of a text string (either when defining the control or using
set_value to change the displayed text) is 32,766 bytes for a single-line edit
control, and 65,535 bytes for a multiline edit control. The set_value and
define_control services will enforce those limits.

Edit controls can now be assigned a <right_click_command> with define,
define_control or set_response, overriding the built-in context menu. (But a
“right” <mouse_event> with a keyboard modifier like “ctrl” won’t override it; nor
will any other mouse event, e.g. “middle”).

The dialog plugin supports two other kinds of edit controls (rich edit and
scintilla). See section II.18.4 "Which Type of Edit Control?" comparing them..

II.5.1 Styles

In addition to styles applying to all controls, there are the following. note that
some, in particular ES_MULTILINE. can’t be altered once an edit control is
created.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 175 of 260
page 175 of 260

Styles for Edit Controls

this style
name

or this
letter #define’d symbol means

vscroll WS_VSCROLL apply vertical scrollbar

hscroll WS_HSCROLL apply horizontal scrollbar

multiline m ES_MULTILINE see note

left l ES_LEFT Aligns text flush left.

centre c ES_CENTER Centres text in a multiline edit control.

right r ES_RIGHT Aligns text flush right in a multiline edit control.

uppercase u ES_UPPERCASE Converts all characters to uppercase as they
are typed into the edit control.

lowercase l ES_LOWERCASE Converts all characters to lowercase as they
are typed into the edit control.

password p ES_PASSWORD

Displays all characters as an asterisk (*) as
they are typed into the edit control. An
application can use the SetPasswordChar
member function to change the character that
is displayed.

autovscroll ES_AUTOVSCROLL Automatically scrolls text up one page when
the user presses ENTER on the last line

autohscroll ES_AUTOHSCROLL

Automatically scrolls text to the right by 10
characters when the user types a character at
the end of the line. When the user presses the
ENTER key, the control scrolls all text back to
position 0.

nohidesel ES_NOHIDESEL

Normally, an edit control hides the selection
when the control loses the input focus and
inverts the selection when the control receives
the input focus. Specifying ES_NOHIDESEL
deletes this default action.

oemconvert o ES_OEMCONVERT see note

readonly ES_READONLY Prevents the user from entering or editing text
in the edit control.

wantreturn ES_WANTRETURN see note

ES_MULTILINE: Designates a multiple-line edit control. (The default is single line.) If the
ES_AUTOVSCROLL style is specified, the edit control shows as many lines as possible and
scrolls vertically when the user presses the ENTER key. If ES_AUTOVSCROLL is not given, the

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 176 of 260
page 176 of 260

edit control shows as many lines as possible and beeps if ENTER is pressed when no more
lines can be displayed. If the ES_AUTOHSCROLL style is specified, the multiple-line edit control
automatically scrolls horizontally when the caret goes past the right edge of the control. To start
a new line, the user must press ENTER. If ES_AUTOHSCROLL is not given, the control
automatically wraps words to the beginning of the next line when necessary; a new line is also
started if ENTER is pressed. The position of the word-wrap is determined by the window size. If
the window size changes, the word-wrap position changes and the text is redisplayed. Multiple-
line edit controls can have scroll bars. An edit control with scroll bars processes its own scroll-
bar messages. Edit controls without scroll bars scroll as described above and process any scroll
messages sent by the parent window.

Undocumented, but it seems you can’t add or remove the ES_MULTILINE style on the fly to an
existing edit control. If you want the appearance of doing so, use two edit controls, one with
MULTILINE, one without; then hide and show them as required.

ES_WANTRETURN: Specifies that a carriage return be inserted when the user presses the
ENTER key while entering text into a multiple-line edit control in a dialog box. Without this style,
pressing the ENTER key has the same effect as pressing the dialog boxes default pushbutton.
This style has no effect on a single-line edit control.

ES_OEMCONVERT: Text entered in the edit control is converted from the ANSI character set to
the OEM character set and then back to ANSI. This ensures proper character conversion when
the application calls the AnsiToOem Windows function to convert an ANSI string in the edit
control to OEM characters. This style is most useful for edit controls that contain filenames.

I think that's all the styles there are.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 177 of 260
page 177 of 260

II.5.2 Messages and Services

You can use set_value to change the text in an edit box.

Here's a list of messages that also work for rich edit controls. Following this table is a short list of messages that only apply to plain edit
controls.

Messages for Edit and Rich edit controls

this message
name

or this
letter #define’d symbol wParam

meaningful
lParam

meaningful
description

getsel EM_GETSEL see note see note retrieves the starting and ending character positions of the current
selection

setsel EM_SETSEL int; start char int; end char selects a range of characters; If the start is 0 and the end is –1, all
text is selected; if start is –1, any current selection is deselected.

scroll EM_SCROLL int; how no scrolls the text vertically in a multiline control; for wParam see SB_
consts among EM_ messages in dialog-related_defines.txt

scrollcaret EM_SCROLLCARET no no scrolls the caret into view

setmargins EM_SETMARGINS int; EC_ const yes sets the widths of the left and right margins; lParam: low-order
word is width left margin, high-order word width of right

getmodify EM_GETMODIFY no no retrieves the state of an edit control's modification flag

setmodify EM_SETMODIFY 0/1 no sets or clears the modification flag; (1 = modified)

getlinecount EM_GETLINECOUNT no no retrieves the number of lines in a multiline edit control

lineindex EM_LINEINDEX yes no retrieves the character index of the first character of a specified line
in a multiline edit control.

getthumb EM_GETTHUMB no no retrieves the position of the scroll box (thumb) in the vertical scroll
bar of a multiline edit control

linelength EM_LINELENGTH yes no retrieves the length, in characters, of a line in an edit control

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 178 of 260
page 178 of 260

Messages for Edit and Rich edit controls

this message
name

or this
letter #define’d symbol wParam

meaningful
lParam

meaningful
description

replacesel EM_REPLACESEL 1/0; can be
undone or not

string replaces the current selection in an edit control with the specified
text

getline EM_GETLINE yes (index) string lParam: first word of buffer set to buffer size

canundo EM_CANUNDO no no determines whether there are any actions in an edit control's undo
queue

undo EM_UNDO no no undoes the last edit control operation in the control's undo queue

emptyundobuffer EM_EMPTYUNDOBUFFER no no resets the undo flag of an edit control

linefromchar EM_LINEFROMCHAR yes no retrieves the index of the line that contains the specified character
index in a multiline edit control

getfirstvisibleline EM_GETFIRSTVISIBLELINE no no retrieves the zero-based index of the uppermost visible line in a
multiline edit control

setpasswordchar EM_SETPASSWORDCHAR char (0 to
rem)

no sets or removes the password character

setreadonly EM_SETREADONLY yes no sets or removes the read-only style (ES_READONLY)

setlimittext EM_SETLIMITTEXT yes no sets the maximum amount of text that the user can type into control

getsel: wParam: pointer to a buffer that receives the starting position of the selection; can be NULL. lParam: pointer to a buffer that
receives the position of the first nonselected character after the end of the selection; can be NULL. Returns is a zero-based value with the
starting position of the selection in the low-order word and the position of the first character after the last selected character in the high-
order word. If either of these values exceeds 65,535, the return value is –1. Best to use EM_EXSETSEL if you've got a rich edit control
with more than 64k characters in it.

setmargins complicated and depends on wether plain or rich edit box, and which version of rich edit. See http://msdn.microsoft.com/library/en-
us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_setmargins.asp

http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_setmargins.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_setmargins.asp

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 179 of 260
page 179 of 260

Messages for Edit Controls Only

this
message

name
or this
letter #define’d symbol

wParam
meaningfu

l

lParam
meaningful

fmtlines EM_FMTLINES yes no Specifies whether soft line-break characters are to be
inserted

setrect EM_SETRECT no RECT* set the formatting rectangle of a multiple-line edit control; causes text to
be redrawn

setrectnp EM_SETRECTNP no RECT* as above, no redraw

posfromchar EM_POSFROMCHAR 0-based
char ndx no retrieves the client area coordinates of a specified

character
charfrompos EM_CHARFROMPOS no integer lParam: X in low-order word, Y in high-order word

linescroll EM_LINESCROLL
int; no chars
to scroll
horizontally

int; no chars
to scroll
vertically

scrolls the text in a multiline edit control

settabstops EM_SETTABSTOPS no tab stops INT array sets the tab stops in a multiline edit control

settabstops: complicated, see http://msdn.microsoft.com/library/en-
us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_settabstops.asp

http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_settabstops.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/editcontrols/editcontrolreference/editcontrolmessages/em_settabstops.asp

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 180 of 260
page 180 of 260

II.5.3 Colours

Text (foreground) and background colours work as advertised.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 181 of 260
page 181 of 260

II.6: List Controls
<control_type> value: lixtbox

Used in sample scripts:
dialogPluginDemo1.powerpro, dialogPluginDemo4.powerpro,
dialogPluginDemo6.powerpro

You can use set_value to insert or add items in a list box, and the following
variants of get_value:

dialog.get_value(<target>)
dialog.get_value(<target>, "selected")
dialog.get_value(<target>, "all")
dialog.get_value(<target>, "selectedIndex")
dialog.get_value(<target>, "selectedCount")

dialog.get_value(<target>)
dialog.get_value(<target>, "selected")

Gets selected items, separated by newlines (\n)
dialog.get_value(<target>, "all")

Gets all items, separted by newlines (\n)
dialog.get_value(<target>, "selectedIndex")

Gets the indices of selected items, separtaed by spaces
dialog.get_value(<target>, "selectedCount")

Gets the number of items selected.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 182 of 260
page 182 of 260

II.6.1 Styles

In addition to styles applying to all controls, there are:

Styles for List Controls

this style name
or

this
letter

#define’d symbol means

novscroll WS_VSCROLL suppress vertical scroll bar

hscroll WS_HSCROLL horizontal scroll bar

extendedsel e LBS_EXTENDEDSEL
The user can select multiple items using the
SHIFT key and the mouse or special key
combinations.

multicolumn c LBS_MULTICOLUMN
Specifies a multicolumn list box that is scrolled
horizontally. The SetColumnWidth member
function sets the width of the columns.

multiplesel m LBS_MULTIPLESEL
 String selection is toggled each time the user
clicks or double-clicks the string. Any number of
strings can be selected.

noredraw LBS_NOREDRAW
List box display is not updated when changes are
made. This style can be changed at any time by
sending a WM_SETREDRAW message.

notify n LBS_NOTIFY Parent window receives an input message
whenever the user clicks or double-clicks a string.

sort o LBS_SORT Strings in the list box are sorted alphabetically.

standard LBS_STANDARD

Strings in the list box are sorted alphabetically,
and the parent window receives an input
message whenever the user clicks or double-
clicks a string. The list box contains borders on all
sides.

usetabstops u LBS_USETABSTOPS see note

disablenoscroll d LBS_DISABLENOSCROLL

The list box shows a disabled vertical scroll bar
when the list box does not contain enough items
to scroll. Without this style, the scroll bar is hidden
when the list box does not contain enough items.

nointegralheight LBS_NOINTEGRALHEIGHT

The size of the list box is exactly the size
specified by the application when it created the
list box. Usually, Windows sizes a list box so that
the list box does not display partial items.

wantkeyboardinp
ut

LBS_WANTKEYBOARDINPUT

The owner of the list box receives
WM_VKEYTOITEM or WM_CHARTOITEM
messages whenever the user presses a key while
the list box has input focus. This allows an
application to perform special processing on the
keyboard input.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 183 of 260
page 183 of 260

LBS_USETABSTOPS: Allows a list box to recognize and expand tab characters when drawing
its strings. The default tab positions are 32 dialog units. (A dialog unit is a horizontal or vertical
distance. One horizontal dialog unit is equal to one-fourth of the current dialog base width unit.
The dialog base units are computed based on the height and width of the current system font.
The GetDialogBaseUnits Windows function returns the current dialog base units in pixels.)

There are a few other styles. See dialog-related_defines.txt: Look for "LBS_".
Avoid LBS_OWNERDRAWxxx styles, they need more support.

II.6.2 Messages and Services

The following named messages are defined for list controls and can be used in
dialog.send_message:

Named Messages for List Controls

this
message

name
or this
letter #define’d symbol wParam

meaningful
lParam

meaningful

add a LB_ADDSTRING no string

delete s LB_DELETESTRING yes no

insert i LB_INSERTSTRING yes string

select s LB_SELECTSTRING yes string

setcursor t LB_SETCURSEL yes (0-based
idx)

II.6.3 Colours

Text (foreground) and background colours work as advertised.

II.6.4 Removing Strings

Use the clear service to remove all strings or a single string from the control. If
you want to delete a specific string, provide its index index (lowest legal value 0
or 1) as a second argument.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 184 of 260
page 184 of 260

II.7: Combo Box Controls
<control_type> value: combobox

Used in sample script dialogPluginDemo1.powerpro

Note that the dimensions of a combobox control has to be large enough to show
the list box, even if it's normally not visible (i.e. "dropdown" or "dropdownlist"
styles)

You can use set_value to change the text in the edit box portion of a combo, or
to insert or add items in a list box., and the following variants of get_value:

dialog.get_value(<target>)
dialog.get_value(<target>, "selected")
dialog.get_value(<target>, "all")
dialog.get_value(<target>, "selectedIndex")

dialog.get_value(<target>)
dialog.get_value(<target>, "selected")

Gets the selected item (the item in the edit box).
dialog.get_value(<target>, "all")

Gets all items, separated by newlines (\n)
dialog.get_value(<target>, "selectedIndex")

Gets the index the selected item

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 185 of 260
page 185 of 260

II.7.1 Styles

In addition to styles applying to all controls, there are:

Styles for Combo Box Controls

this style name or this
letter #define’d symbol means

novscroll WS_VSCROLL suppress vertical scroll bar

autohscroll d CBS_AUTOHSCROLL

Automatically scrolls the text in the edit
control to the right when the user types
a character at the end of the line. If this
style is not set, only text that fits within
the rectangular boundary is allowed.

dropdown d CBS_DROPDOWN
Similar to CBS_SIMPLE, except that the
list box is not displayed unless the user
selects an icon next to the edit control.

dropdownlist l CBS_DROPDOWNLIST

Similar to CBS_DROPDOWN, except
that the edit control is replaced by a
static-text item that displays the current
selection in the list box.

oemconvert d CBS_OEMCONVERT see note

simple s CBS_SIMPLE
The list box is displayed at all times.
The current selection in the list box is
displayed in the edit control.

sort o CBS_SORT Automatically sorts strings entered into
the list box.

disablenoscroll CBS_DISABLENOSCROLL

The list box shows a disabled vertical
scroll bar when the list box does not
contain enough items to scroll. Without
this style, the scroll bar is hidden when
the list box does not contain enough
items.

nointegralheight CBS_NOINTEGRALHEIGHT

Specifies that the size of the combo box
is exactly the size specified by the
application when it created the combo
box. Normally, Windows sizes a combo
box so that the combo box does not
display partial items.

CBS_OEMCONVERT: Text entered in the combo box edit control is converted from the ANSI
character set to the OEM character set and then back to ANSI. This ensures proper character
conversion when the application calls the AnsiToOem Windows function to convert an ANSI
string in the combo box to OEM characters. This style is most useful for combo box controls that
contain filenames and applies only to combo box controls created with the CBS_SIMPLE or
CBS_DROPDOWN styles.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 186 of 260
page 186 of 260

There are a few other styles. See dialog-related_defines.txt: Look for "CBS_".
Avoid CBS_OWNERDRAWxxx styles, they need more support.

II.7.2 Messages and Services

The following named messages for combo box controls are defined and can be
used in dialog.send_message:

Named Messages for Combo Box Controls

this
message

name
or this
letter #define’d symbol wParam

meaningful
lParam

meaningful

add a CB_ADDSTRING no string

delete s CB_DELETESTRING yes no

insert i CB_INSERTSTRING yes string

select s CB_SELECTSTRING yes string

find f CB_FINDSTRING yes string

reset - CB_RESETCONTEN
T no no

setcursor t CB_SETCURSEL yes (0-based
idx) no

II.7.3 Colours

Text (foreground) colour doesn’t seem to work. Might be style-dependent.

Background colour doesn’t work for the CBS_DROPDOWN ("dropdown") or
CBS_SIMPLE ("simple") but does for the edit portion only for
CBS_DROPDOWNLIST ("dropdownlist"). Go figger. It might work for some
other styles.

II.7.4 Removing Strings

Use the clear service to remove all strings or a single string from the control. If
you want to delete a specific string, provide its index index (lowest legal value 0
or 1) as a second argument.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 187 of 260
page 187 of 260

II.8: The Scrollbar Control
<control_type> value: scrollbar

Used in sample script dialogPluginDemo1.powerpro

In the main example script (dialogPluginDemo.powerpro) I use a scrollbar to
fake a spinner: in the current version you're probably best using an up-down
control for this purpose. You can use them as pseudo-sliders too, setting the
page value to a small value using dialog.set_range.

For more about scrollbars see:

http://msdn.microsoft.com/library/en-
us/shellcc/platform/commctls/scrollbars/aboutscrollbars.asp?frame=true

II.8.1 Styles

In addition to styles applying to all controls, there are:

Styles for Scrollbars

this style
name

or this
letter

#define’d
symbol means

horizontal h SBS_HORZ Designates a horizontal scroll
bar

vertical v SBS_VERT Designates a vertical scroll bar

Probably best to use exactly one of these styles. No idea what happens if your
specify neither, or, god help you, both.

There are a bunch of other weird styles, all to do with sizing and placement of
scrollbar elements. See the URL above and dialog-related_defines.txt. Look
for "SBS_".

II.8.2 Messages and Services

As yet I've not provided any message names for scrollbars.

There are three services that apply to scroll bars: set_range, set_value, and
get_value. You'll almost always have to call dialog.set_range after creating or
running a dialog, to set your desired <position>, <min>, <max> and
<page_size> (if you don’t call it, or omit a parameter when you do, defaults are:
<min> of 0, <max> of 99, and <page_size> of 1.)

If you provide a <script_to_call> for a scrollbar control, it will fire whenever the
user moves the scrollbar, whether by mouse or keyboard (which, if you care,
causes either a WM_VSCROLL or WM_HSCROLL message to be generated).

http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/scrollbars/aboutscrollbars.asp?frame=true
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/scrollbars/aboutscrollbars.asp?frame=true

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 188 of 260
page 188 of 260

II.8.3 Colours

Text (foreground) colour has no meaning for scrollbars, so the <foreground>
parameters of define_control and calls to set_colour are ignored.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 189 of 260
page 189 of 260

II.9: The Spinner Control

<control_type> value: spinner

Used in sample script dialogPluginDemo2.powerpro

Unlike the scrollbar, a spinner can be associated with a buddy control (typically
an edit or static) which automatically updates as the value of the spinner
changes. You have to send the setbuddyint message using as an argument
the window handle of the buddy control (obtained with dialog.get_hwnd). With
appropriate styles you can force the spinner to position itself next to it's buddy.
You don’t have to monitor user changes to the buddy edit control; if it’s value
changes, the spinner will automatically be updated.

If you want your associated control to display anything other than an integer, the
buddy mechanism won’t work for you; you’ll have to catch events in both the
spinner and the associated control, rather as I’ve done for the scrollbar used as
a spinner in the test script dialogPluginDemo1.powerpro.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 190 of 260
page 190 of 260

II.9.1 Styles

In addition to styles applying to all controls, there are:

Styles for Spinners

this style
name

or this
letter #define’d symbol means

wrap w UDS_WRAP
Causes the position to "wrap" if it is
incremented or decremented beyond the
ending or beginning of the range.

setbuddyint b UDS_SETBUDDYINT

Causes the control to set the text of the
buddy window when the position
changes. The text consists of the position
formatted as a decimal or hexadecimal
string.

alignright r UDS_ALIGNRIGHT

Positions the spin button control next to
the right edge of the buddy window. The
width of the buddy window is decreased
to accommodate the width of the control.

alignleft l UDS_ALIGNLEFT

Positions the spin button control next to
the left edge of the buddy window. The
buddy window is moved to the right and
its width decreased to accommodate the
width of the control.

autobuddy a UDS_AUTOBUDDY
Automatically selects the previous
window in the Z-order as the controls
buddy window.

arrowkeys k UDS_ARROWKEYS

Causes the control to increment and
decrement the position when the UP
ARROW and DOWN ARROW keys are
pressed.

horz h UDS_HORZ Causes the controls arrows to point left
and right instead of up and down

nothousands n UDS_NOTHOUSANDS Does not insert a thousands separator
between every three decimal digits.

hottrack UDS_HOTTRACK

Causes the control to exhibit "hot
tracking" behaviour. That is, it highlights
the control's buttons as the mouse
passes over them. This style requires
win98 or win2000. If the system is
running 95 or NT4, the flag is ignored.
The flag is also ignored on XP when the
desktop theme overrides it.

There are a bunch of other weird styles, all to do with sizing and placement of

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 191 of 260
page 191 of 260

spinner elements. See the URL above and dialog-related_defines.txt. Look for
"UDS_".

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 192 of 260
page 192 of 260

II.9.2 Messages and Services

The following named messages are defined for spinners and can be used in
dialog.send_message:

Named Messages for Services

this
message

name
or this
letter #define’d symbol

wParam
meaningf

ul

lParam
meaningfu

l

setbase b UDM_SETBASE yes no

setbuddy u UDM_SETBUDDY yes no

The setbase message sets the radix base for an up-down control. The base value
determines whether the buddy window displays numbers in decimal or hexadecimal
digits. Hexadecimal numbers are always unsigned, and decimal numbers are signed.

The setbuddy message sets the buddy window wParam must be the window handle
of the buddy window (obtained with dialog.get_hwnd)

There are three services that apply to spinners: set_range, set_value, and
get_value. You'll almost always have to call dialog.set_range after creating or
running a dialog, to set your desired <min> (must be more than -0x7fff) and
<max> (must be less than 0x7fff) (if you don’t call it, defaults are: <min> of 0
and <max> of 99). The fourth parameter of set_range is ignored.

If you provide a <script_to_call> for a spinner, it will fire whenever the user
moves the spinner, whether by mouse or keyboard (which, if you care, causes
either a WM_VSCROLL or WM_HSCROLL message to be generated).

II.9.3 Colours

Colours can’t be set for a spinner, so the <foreground> and <background>
parameters of define_control and calls to set_colour are ignored.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 193 of 260
page 193 of 260

II.10: The Slider (Tracker Bar) Control
<control_type> value: slider

Used in sample scripts:
dialogPluginDemo2.powerpro, dialogPluginDemo4.powerpro

The slider or tracker bar is another specialised variant of a scrollbar, that gives
you a thumb to move along a scale to indicate a quantity. Details at:

http://msdn.microsoft.com/library/en-
us/shellcc/platform/commctls/trackbar/trackbar.asp?frame=true

http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/trackbar/trackbar.asp?frame=true
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/trackbar/trackbar.asp?frame=true

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 194 of 260
page 194 of 260

II.10.1 Styles

In addition to styles applying to all controls, there are:

Styles for Sliders

this style
name

or
this

letter
#define’d symbol means

vert v TBS_VERT Orients the slider vertically. If you do not specify
an orientation, the slider is oriented horizontally.

left l TBS_LEFT

Displays tick marks on the left of a vertical slider.
Can be used with the TBS_RIGHT style to
display tick marks on both sides of the slider
control.

top t TBS_TOP

Displays tick marks on the top of a horizontal
slider. Can be used with the TBS_BOTTOM style
to display tick marks on both sides of the slider
control.

both b TBS_BOTH Displays tick marks on both sides of the slider in
any orientation.

bottom 0 TBS_BOTTOM

Displays tick marks on the bottom of a horizontal
slider. Can be used with the TBS_TOP style to
display tick marks on both sides of the slider
control.

right 0 TBS_RIGHT

Displays tick marks on the right of a vertical
slider. Can be used with the TBS_LEFT style to
display tick marks on both sides of the slider
control.

autoticks a TBS_AUTOTICKS

Creates a slider that has a tick mark for each
increment in its range of values. These tick
marks are added automatically when an
application calls the SetRange member function.
You cannot use the SetTic and SetTicFreq
member functions to specify the position of the
tick marks if you use this style. Use the ClearTics
member function instead.

enableselrange e TBS_ENABLESELRANGE see note

fixedlength f TBS_FIXEDLENGTH Allows the thumb's size to be changed

nothumb h TBS_NOTHUMB No thumb!!

noticks n TBS_NOTICKS Creates a slider that does not display tick marks.

TBS_ENABLESELRANGE: if set, you can specify a "selection range," which restricts the user
to a specified portion of the total range. The logical units do not change, but only a subset of
them are available for use. The slider highlights the available range and displays triangular tick
marks at the start and end. Typically, an application handles the slider's notification messages
and sets the slider's selection range according to the user's input.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 195 of 260
page 195 of 260

When a slider control has this style, the tick marks at the starting and ending positions of a
selection range are displayed as triangles (instead of vertical dashes) and the selection range is
highlighted. For example, selection ranges might be useful in a simple scheduling application.
The user could select a range of tick marks corresponding to hours in a day to identify a
scheduled meeting time.

There are other styles. See dialog-related_defines.txt. Look for "TBS_".

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 196 of 260
page 196 of 260

II.10.2 Messages and Services

There are three services that apply to sliders: set_range, set_value, and
get_value. You'll almost always have to call dialog.set_range after creating or
running a dialog, to set your desired <min>, <max> and <page_size> (if you
don’t call it, or omit a parameter when you do, defaults are: <min> of 0, <max>
of 99 and <page_size> of 1.)

If you provide a <script_to_call> for a slider, it will fire whenever the user moves
the slider, whether by mouse or keyboard (which, if you care, causes either a
WM_VSCROLL or WM_HSCROLL message to be generated).

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 197 of 260
page 197 of 260

The following named messages are defined for sliders and can be used in dialog.send_message:

Named Messages for Sliders

this message
name

or
this

letter
#define’d symbol

wParam
meaningf

ul

lParam
meaningful means

getpos g TBM_GETPOS no no Returns current logical position of the slider, i.e. integer values in the
slider's range of minimum to maximum slider positions.

settic t TBM_SETTIC yes no sets a tick mark in a slider at the specified logical position

cleartics c TBM_CLEARTICS 0/1 no
removes the current tick marks from a slider. This message does not
remove the first and last tick marks that are created automatically by
the slider. Only param is redraw flag: If TRUE, the message redraws
the slider after receiving the message; if FALSE, doesn't.

setselstart s TBM_SETSELSTART yes no sets the starting logical position of the current selection range in a
slider

setselend e TBM_SETSELEND 0/1 yes (pos)

sets the ending logical position of the current selection range in a
trackbar; ignored if the slider doesn't have the
TBS_ENABLESELRANGE style.
wParam is redraw flag: If TRUE, the message redraws the slider after
receiving the message; if FALSE, doesn't

getnumtics n TBM_GETNUMTICS no no retrieves the number of tick marks in slider

getselstart 0 TBM_GETSELSTART no no
retrieves the starting position of the current selection range in a slider.
A slider can have a selection range only if you specified the
TBS_ENABLESELRANGE style when you created it.

getselend 0 TBM_GETSELEND no no sets the ending logical position of the current selection range in a
slider.
These messages are ignored if the slider doesn't have the

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 198 of 260
page 198 of 260

Named Messages for Sliders

this message
name

or
this

letter
#define’d symbol

wParam
meaningf

ul

lParam
meaningful means

TBS_ENABLESELRANGE style.

clearsel c TBM_CLEARSEL 0/1 no
clears the current selection range in a slider; wParam is redraw flag: If
TRUE, the message redraws the slider after receiving the message; if
FALSE, doesn't

setticfreq f TBM_SETTICFREQ yes no The slider must have the TBS_AUTOTICKS style to use this message

setpagesize p TBM_SETPAGESIZE no integer sets the number of logical positions the slider moves in response to
keyboard input, such as the PAGE UP or PAGE DOWN

setlinesize l TBM_SETLINESIZE no integer

retrieves the number of logical positions the trackbar’s slider moves in
response to keyboard input from the arrow keys, such as the RIGHT
ARROW or DOWN ARROW keys. The logical positions are the integer
increments in the trackbar's range of minimum to maximum slider
positions. The default setting for the line size is 1

setthumblength b TBM_SETTHUMBLENGTH yes no message sets the length of the thumb; ignored if the slider doesn't have
the TBS_FIXEDLENGTH style

There are other messages, mostly to do with retrieving slider settings. See dialog-related_defines.txt. Look for "TBM_".

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 199 of 260
page 199 of 260

II.10.3 Colours

Background colours work as advertised; foreground colours don't, so you can't colour the
thumb thingie. I might get around to fixing that.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 200 of 260
page 200 of 260

II.11: The Progress Control
<control_type> value: progress

Used in sample script dialogPluginDemo2.powerpro

II.11.1 Styles

In addition to styles applying to all controls, there are:

Styles for Progress Bars

this style
name

or
this

letter
#define’d
symbol means

smooth s PBS_SMOOTH

The progress bar displays progress status in a
smooth scrolling bar instead of the default segmented
bar. When this style is present, the control
automatically reverts to the Classic Theme
appearance on Windows XP or later. Windows 95
and NT4 r

vertical v PBS_VERTICAL
The progress bar displays progress status vertically,
from bottom to top. Windows 95 and NT4 require
Internet Explorer 3.0 or later to support this option.

marquee m PBS_MARQUEE

[Requires Windows XP or later] The progress bar
moves like a marquee; that is, each change to its
position causes the bar to slide further along its
available length until it wraps around to the other
side. A bar with this style has no defined position.
Each attempt to change its position will instead slide
the bar by one increment. This style is typically used
to indicate an ongoing operation whose completion
time is unknown.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 201 of 260
page 201 of 260

II.11.2 Messages and Services

The following named messages are defined for progress bars and can be used in
dialog.send_message:

Named Messages for Progress Bars

this
message

name

or
this

letter
#define’d symbol

wParam
meaningf

ul

lParam
meaningfu

l

setpos s PBM_SETPOS yes no

deltapos d PBM_DELTAPOS yes no

setstep p PBM_SETSTEP yes no

stepit t PBM_STEPIT no no

PBM_DELTAPOS: advances the current position of a progress bar by a specified increment

PBM_SETSTEP: specifies the step increment for a progress bar. The step increment is the amount by which
the progress bar increases its current position whenever it receives a PBM_STEPIT message. By default,
the step increment is set to 10.

There are three services that apply to progress bars: set_range, set_value, and
get_value. You'll almost always have to call dialog.set_range after creating or running a
dialog, to set your desired <min>, <max> and <step> (if you don’t call it, or omit a
parameter when you do, defaults are: <min> of 0, <max> of 99 and <step> of 10).

II.11.3 Colours

Text (foreground) and background colours work as advertised, unless you're using a non-
classic theme, in which case they don't. Don’t ask me, ask Microsnot.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 202 of 260
page 202 of 260

II.12: The Date-Time Control
<control_type> value: datetime

Used in sample script dialogPluginDemo2.powerpro

To use the date-time picker on Windows 95/NT you must have updated comctl32.dll to
version 4.70 or later.

Dates accepted for input or produced for output by the control follow the same format as
the dates produced by PowerPro keywords and functions like date and formatdate. Dates
are represented as eight digit number yyyymmdd, such as 20021028 for October 28, 2002
or 20030101 for January 1, 2003.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 203 of 260
page 203 of 260

II.12.1 Styles

In addition to styles applying to all controls, there are:

Styles for Date-Time controls

this style name or this
letter #define’d symbol means

updown u DTS_UPDOWN
Provides an up-down control to the right of the control to
modify date-time values, which replaces the of the drop-
down month calendar that would otherwise be available.

shownone n DTS_SHOWNONE

Displays a checkbox inside the control that users can
uncheck to make the control have no date/time selected.
Whenever the control has no date/time, Gui Submit and
GuiControlGet will retrieve a blank value (empty string).

shortdateformat s DTS_SHORTDATEFORMAT

Displays the date in short format. In some locales, it looks
like 6/1/05 or 6/1/2005. On older operating systems, a
two-digit year might be displayed. This is why
DTS_SHORTDATECENTURYFORMAT is the default and
not DTS_SHORTDATEFORMAT.

longdateformat l DTS_LONGDATEFORMAT
Format option "LongDate". Displays the date in long
format. In some locales, it looks like Wednesday, June 01,
2005.

shortdatecenturyformat c DTS_SHORTDATECENTURYFORMAT

Format option blank/omitted. Displays the date in short
format with four-digit year. In some locales, it looks like
6/1/2005. If the system's version of Comctl32.dll is older
than 5.8, this style is not supported and
DTS_SHORTDATEFORMAT is automatically substituted.

timeformat t DTS_TIMEFORMAT Format option "Time". Displays only the time, which in
some locales looks like 5:31:42 PM.

rightalign r DTS_RIGHTALIGN The calendar will drop down on the right side of the control
instead of the left.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 204 of 260
page 204 of 260

There are other styles. See dialog-related_defines.txt. Look for "DTS_".

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 205 of 260
page 205 of 260

II.12.2 Messages and Services

The following named messages are defined for date-time pickers and can be used in
dialog.send_message:

Named Messages for Date-Time Picker

this message
name

or
this

letter
#define’d symbol wParam

meaningful
lParam

meaningful

setformat f DTM_SETFORMAT no string

getsystime g DTM_GETSYSTEMTIME no
handle to

SYSTEMTIME
struct

setrange s DTM_SETRANGE yes; details

rgst: handle array
of 2

SYSTEMTIME
structs

setformat: sets the display formatting string to whatever you pass in lParam.

getsystime: returns GDT_NONE (1) if "none" is selected (only if the control has the "shownone"
style); returns GDT_VALID (0) and modifies SYSTEMTIME struct.

setrange: wParam: if includes GDTR_MIN (0x0001), sets the minimum allowable systemtime to
rgst[0], otherwise removes minimum; if includes GDTR_MAX (0x0002), sets the maximum
allowable systemtime to rgst[1], otherwise removes maximum. See dialogPluginDemo2.powerpro
for an example.

You can use set_value to change the date of displayed by a date picker. The value must be in the
format yyyymmdd; if the new value is the null string, clears selection.

You can use get_value to get the date of displayed by a date picker, in yyyymmdd format.

There are other messages. See dialog-related_defines.txt. Look for "DTM_".

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 206 of 260
page 206 of 260

II.12.3 Colours

In both dialog.define_control and dialog.set_colour, the <foreground> parameter, if a
number (possible generated by dialog.rgb) or a colour name, it will send a MCSC_TEXT
message to the control. Otherwise, the <foreground> parameter can be one of the
following keywords, with the second <background> parameter the colour name or RGB
value you wish to set:

word #define means

background MCSC_BACKGROUND the background colour (between
months)

text MCSC_TEXT the dates

titlebk MCSC_TITLEBK background of the title

titletext MCSC_TITLETEXT title text

monthbk MCSC_MONTHBK background within the month cal

trailingtext MCSC_TRAILINGTEXT the text color of header & trailing days

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 207 of 260
page 207 of 260

II.13: The Month-Calendar Control
<control_type> value: monthcal

Used in sample script dialogPluginDemo2.powerpro

To use the month-calendar date picker on Windows 95/NT you must have updated
comctl32.dll to version 4.70 or later.

Dates accepted for input or produced for output by the control follow the same format as
the dates produced by PowerPro keywords and functions like date and formatdate. Dates
are represented as eight digit number yyyymmdd, such as 20021028 for October 28, 2002
or 20030101 for January 1, 2003.

Like the Date-Time control but doesn't collapse to an edit box. Seems to need about 110
dialog units width, 90 depth to display nicely.

Unlike the Date-Time control, you can select a range of dates. There are messages you
can send to control how many months are displayed, how big a selection is allowed, date
range that can be displayed, and so on.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 208 of 260
page 208 of 260

II.13.1 Styles

In addition to styles applying to all controls, there are:

Styles for Month-Calendar Controls

this style
name

or this
letter #define’d symbol means

daystate d MCS_DAYSTATE

Makes the control send
MCN_GETDAYSTATE notifications to
request information about which days should
be displayed in bold. [Not yet supported]

multiselect m MCS_MULTISELECT

Allows the user to select a range of dates
rather than being limited to a single date. By
default, the maximum range is 366 days,
which can be changed by sending the
"setmaxselcount" message to the control.

weeknumbers w MCS_WEEKNUMBERS
Displays week numbers (1-52) to the left of
each row of days. Week 1 is defined as the
first week that contains at least four days.

notodaycircle c MCS_NOTODAYCIRCLE Prevents the circling of today's date within
the control.

notoday n MCS_NOTODAY Prevents the display of today's date at the
bottom of the control.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 209 of 260
page 209 of 260

II.13.2 Messages and Services

The following named messages are defined for month-calendar controls and can be used
in dialog.send_message:

Named Messages for Month-Calendar Controls

this message
name

or
this

letter
#define’d symbol

wParam
meaningf

ul
lParam meaningful

setrange s MCM_SETRANGE yes; details rgst: handle array of 2 SYSTEMTIME
structs

setdate d MCM_SETCURSEL no; details SYSTEMTIME struct

getselrange g MCM_GETSELRANGE no rgst: handle array of 2 SYSTEMTIME
structs

setselrange - MCM_SETSELRANGE no rgst: handle array of 2 SYSTEMTIME
structs

setmaxsel m MCM_SETMAXSELCOUN
T yes no

Notes:

setdate: causes an error if control has "multiselect" style. Providing it doesn't have that style, you
can also use set_value to change the date displayed.

You can use get_value to get the date of displayed by a month-calendar controls, in yyyymmdd
format. It will return two dates separated by space if the control has the "multiselect" style.

setmaxsel: if control has "multiselect" style, sets maximum number of days selectable.

getselrange: if control has "multiselect" style, gets range. get_value is simpler to use.

setselrange: if control has "multiselect" style. set_value is easier to use.

There are other messages. See dialog-related_defines.txt. Look for "MCM_".

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 210 of 260
page 210 of 260

II.13.3 Colours

In both dialog.define_control and dialog.set_colour, the <foreground> parameter, if a
number (possible generated by dialog.rgb) or a colour name, it will send a
LVM_SETTEXTCOLOR message to the control. Otherwise, the <foreground> parameter
can be one of the following keywords listed here, with the second <background>
parameter the colour name or RGB value you wish to set.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 211 of 260
page 211 of 260

II.14: The ActiveX Container Control
<control_type> value: ActiveX

Used in sample scripts:
dialogPluginDemo3.powerpro, dialogPluginDemo4.powerpro

You can embed an ActiveX object in a control of type “activeX”. To do so, set the
<text_or_var> of your dialog.define_control service call (or equivalent field in your
<dialog_definition_file>) to:

• the name of a valid activeX object, e.g. "OWC.Chart" (if you have Office Web
Components installed); or "ShockwaveFlash.ShockwaveFlash" (if you have
MacroMedia Flash installed; or "MSCAL.Calendar" (for the activeX version of the
calendar control). Or

• A valid url, or absolute path to a file of a type that Internet Explorer knows how to
handle. That will always include htm and html files, but, with the right plugins
installed, might include .pdf, .swf, .mov or .ram files.

If Internet Explorer options, security tab, miscellaneous node, “Allow scripting of
Internet Explorer Webbrowser control” is set off, a url may not work.

Once you’ve created your dialog, you can use dialog.get_hwnd to get a handle for your
activeX control, then feed that handle to com.get_object. From then on you can
manipulate the com object as usual by its methods, and get and set its properties.

Unfortunately there's no way to respond to user events within the embedded controls: so if
e.g. someone fills in a spreadsheet control, you'd have to have a button or other user-
triggerable UI feature to allow you to read back control properties when done.

An example:

hDlg.define_control(10, 50, 245, 80, "activeX", "ax2cal", "MSCAL.Calendar")

Then, perhaps in response to the user clicking the “OK” button for the dialog:

local com_status, objCal
objCal = com.get_object(hDlg.get_hwnd("ax2cal"))
;Value is a property of a calendar object.
win.debug("Date picked was: " ++ objCal.Value)

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 212 of 260
page 212 of 260

II.15: The Statusbar Control
<control_type> value: statusbar

Used in sample script dialogPluginDemo2.powerpro

A status bar is a horizontal window that is positioned, by default, at the bottom of a parent
window. It is used to display status information defined by the application. If you wish to
display more than one type of status information, you can divide the status bar into
sections.

If you want a standard statusbar stretched across the bottom of your dialog, use
dimensions 0x80000000, 0x80000000 , 10,10. CW_USEDEFAULT = 0x80000000 is
defined in dialog-related_defines.txt. You can also use –100 for default x and y positions.

set_value:
dialog.set_value(<target>, <pos>, <text_for_part_pos> [, <text_

for_part_part_pos+1>])
<dialog_handle>.set_value(<pos>, <text_for_part_pos> [, <text_

for_part_part_pos+1>])

If the statusbar has multiple parts, <pos> can be index of the part (lowest legal value 0 or
1), possibly or’ed with drawing operation (see the settext message for possible drawing
operation values). If <pos> plus number of text arguments is larger than the number of
parts, or you get an error message.

get_value: provide a partno as argument to return the text in that part.

II.15.1 Styles

In addition to styles applying to all controls, and those applying to some common controls,
there are:

Styles for Statusbars

this
style
name

or
this

letter
#define’d
symbol means

sizegrip s SBS_SIZEGRIP
places a sizing grip at the lower-right corner
of the status bar; dialog must have the
“thickframe” style for it to work.

tooltips i SBT_TOOLTIPS allows the SB_SETTIPTEXT message to set
the tooltip text of part of a statusbar

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 213 of 260
page 213 of 260

Styles For Some Common Controls (header controls, toolbars, and statusbars)

this style
name

or
this

letter
#define’d symbol means

bottom b CCS_BOTTOM
Causes the control to position itself at the bottom of the parent window’s client area and
sets the width to be the same as the parent window’s width. Status windows have this
style by default.

nodivider n CCS_NODIVIDER Prevents a two-pixel highlight from being drawn at the top of the control.

nohilite CCS_NOHILITE Prevents a one-pixel highlight from being drawn at the top of the control.

nomovey y CCS_NOMOVEY
Causes the control to resize and move itself horizontally, but not vertically, in response
to a WM_SIZE message. If CCS_NORESIZE is used, this style does not apply. Header
windows have this style by default.

noparentalign p CCS_NOPARENTALIGN

Prevents the control from automatically moving to the top or bottom of the parent
window. Instead, the control keeps its position within the parent window despite
changes to the size of the parent. If CCS_TOP or CCS_BOTTOM is also used, the
height is adjusted to the default, but the position and width remain unchanged.

noresize r CCS_NORESIZE
Prevents the control from using the default width and height when setting its initial size
or a new size. Instead, the control uses the width and height specified in the request for
creation or sizing.

top t CCS_TOP
Causes the control to position itself at the top of the parent window’s client area and
sets the width to be the same as the parent window’s width. Toolbars have this style by
default.

vertical v CCS_VERT

left l CCS_LEFT

right r CCS_RIGHT

nomovex x CCS_NOMOVEX

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 214 of 259
page 214 of 259

II.15.2 Messages and Services

The following named messages are defined for statusbars and can be used in
dialog.send_message:

Named Messages for Statusbars

this
message

name
or this
letter

#define’d
symbol

wParam
meaningful lParam meaningful

setparts p SB_SETPARTS yes; no of
parts

handle to array (of integers,
widths) details

settext t SB_SETTEXT yes; details string

settip i SB_SETTIPTEXT yes; details string

simple s SB_SIMPLE yes; details no

minheight h SB_SETMINHEIGHT
yes; minimum

height, in
pixels

no

setborders b SB_SETBORDERS no handle to array of ints,
details; I can’t get it to work

Notes:

setparts: sets the number of parts in a status bar and gets the coordinate of the right edge of each
part. lParam is the address of an integer array that has the same number of elements as parts
specified by wParam. Each element in the array specifies the position, in client coordinates, of the
right edge of the corresponding part. If an element is 0x08000000 or –1 (SBPS_STRETCH
defined in dialog-related_defines.txt) the right edge for that part extends to the right edge of the
window.

Return value: TRUE if successful; FALSE otherwise.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 215 of 259
page 215 of 259

settext: sets the text in the given part of a status bar or header window. wParam is the or'ed zero-
based index of the part to set and the type of drawing operation (the same values can be used in
calls to set_value for statusbars):

operation value means

- 0 The text is drawn so that it appears as part of the window--that is,
the text appears lower than the plane of the window.

SBT_NOBORDERS 0x0100 The text is drawn without borders; doesn't work unless you use
set_value

SBT_POPOUT 0x0200 The text is drawn so that it appears raised, that is, the text appears
higher than the plane of the window.

- 255
the status bar is assumed to be a simple window with only one part.
lParam is the address of a null-terminated string that specifies the
text to set.

Return value: TRUE if successful; FALSE otherwise.

You can also use set_value to change the text of a statusbar or one of its parts.

settip: sets the tooltip text for the wParam'th part of status bar. The status bar must have been
created with the SBT_TOOLTIPS style to enable ToolTips. The text you send with this message is
displayed when the corresponding pane in the status bar contains text that is truncated due to the
size of the pane.

simple: specifies whether a status bar displays simple text or displays all window parts set by a
previous SB_SETPARTS message. If wParam is TRUE, the status bar displays simple text. If
wParam is FALSE, the status bar displays multiple parts.

Return value: FALSE if an error occurs.

setborders: sets the widths of the horizontal and vertical borders of a status bar or header
window. These borders determine the spacing between the outer edge of the window and the
rectangles within the window that contain text, and the spacing between rectangles. lParam is a
handle to an array of integers that has three elements. The first element specifies the width of the
horizontal border, the second specifies the width of the vertical border, and the third specifies the
width of the border between rectangles. If an element is set to -1, the default width for the border is
used.

Return value: TRUE if successful; FALSE otherwise.

II.15.3 Colours

The background colour in define_control and dialog.set_colour works, after a fashion
(rather ugly, the raised borders of the control and of its subsections is coloured along with
the text areas); foreground colour has no effect.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 216 of 259
page 216 of 259

II.16: The Tab Control
<control_type> value: statusbar

Used in sample script dialogPluginDemo4.powerpro

Use set_value to create tabs within a tab control and choose what show controls appear in
which tab.

dialog.set_value(<dialog_handle>, <tab_ctrl_id>, <tab_no>, <text>,
<image_number>, [, <ctrl_id1> [, <ctrl_id2> [,…. [, <ctrl_idn> [,
<select>]]])

dialog.set_value(<dialog_handle>, <tab_ctrl_id>, "height", <height>)
dialog.set_value(<dialog_handle>, <tab_ctrl_id>, "imagesize", <x>, <y>)

You must only invoke set_value after a dialog is created or run.

You can also use the aliases for set_value, if you use the handle.service syntax, e.g.
<dialog_handle>.set(<tab_ctrl_id>, <tab_no>, <text>, <icon number>, [, <ctrl_id1> [,

<ctrl_id2> [,…. [, <ctrl_idn> [, <select>]]])
<dialog_handle> Required: A handle returned by dialog.define. See Section 11.1

<target> Required: Must be either the control id (see Section 11.3) of a tab control.

<tab_no> Required (except with "height" and "imagesize" keywords): index (lowest legal
value 0 or 1) of a tab you wish to add or modify.

If <tab_no> tab already exists, and <text> is identical to the caption on the existing tab,
<image_number>is ignored and <ctrl_id>s are added to the existing tab. If <text> isn't
identical to the caption on the existing tab, the existing tab is deleted, together with all its
associated controls, and the new one inserted in its place. No idea what happens if
<tab_no>s specified in a series of called to set_value aren’t in sequence.

<text> Required (except with "height" and "imagesize" keywords):

<image_number> Required: index (lowest legal value 0 or 1) of icon previously added to
the tab control using set_image. If no image desired or available, use one less than
lowest legal value. If the size of images being inserted is greater than tab size (specified
with the "height" option), tab size is increased.

<ctrl_id>s (at least one) Required: The control id(s) (see Section 11.3) of any number of
controls which will be considered the exclusive property of the tab being created or
modified. The controls with the specified will control id(s) be made visible when the
<tab_no>th is selected, hidden otherwise.

It is your responsibility to make sure a control id is associated with only one tab.

The enable and show services affect controls associated with a tab control.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 217 of 259
page 217 of 259

<select> Optional: 0 or 1, assumed 0 if absent. The <tab_no>th will be the selected tab
when the tab control is first shown. Only one tab should have a <select> of 1; funny stuff
will happen if you do otherwise.

The "height" option changes the height of the tabs on a tab control.

The "imagesize" option changes the dimensions of images stored in the tab control's
image list. Invoking this option will erase all images already in the list, so you should call it
before any calls to set_image. <x>, <y> are pixels; typical values for both are 16 (normal
small icon size) or 36 (normal large icon size). By default image size is 16 x 16.

Tab controls respond to the TCN_SELCHANGE notification sent with a WM_NOTIFY
message (and deliver the numeric id of the tab changed to (lowest legal value 0 or 1) as
the lParam parameter sent to your <script_to_run>.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 218 of 259
page 218 of 259

II.16.1 Styles

In addition to styles applying to all controls, and those applying to some common controls, there are

Styles for Tab Controls

this style name or this
letter #define’d symbol means

buttons - TCS_BUTTONS Creates a tab control that looks and works like a button.

fixedwidth w TCS_FIXEDWIDTH Creates a tab control with a fixed width.

focusonbuttondown - TCS_FOCUSONBUTTONDOWN Specifies that the tab will receive the input focus when the user clicks it.
This style is used in conjunction with the TCS_BUTTONS style.

multiline - TCS_MULTILINE Allows multiple rows of tabs in the tab control.

raggedright - TCS_RAGGEDRIGHT
Specifies that tabs will not be stretched to fill the row. By default, the tab
control will stretch each tab item (text, icon, or combination of text and
icon displayed in the tab) equally to fill the tab control.

rightjustify - TCS_RIGHTJUSTIFY Right-justifies the text in the tab control. The text is left-justified by
default.

singleline - TCS_SINGLELINE Allows only a single row of tabs in the tab control.

tabs t TCS_TABS Creates tabs that look like notebook dividers, and draws a border
around the display area.

scrollopposite s TCS_SCROLLOPPOSITE Unneeded tabs scroll to the opposite side of the control when a tab is
selected.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 219 of 259
page 219 of 259

Styles for Tab Controls

this style name or this
letter #define’d symbol means

Requires common controls v 4.70.

bottom b TCS_BOTTOM tabs go at bottom.

right r TCS_RIGHT tabs go on right; goes with…

vertical v TCS_VERTICAL vertical tabs

multiselect m TCS_MULTISELECT
Multiple tabs can be selected by holding down the CTRL key when
clicking. Must be used with the TCS_BUTTONS.
Requires common controls v 4.70

flatbuttons f TCS_FLATBUTTONS

Selected tabs appear as being indented into the background while other
tabs appear as being on the same plane as the background. Only
affects tab controls with the TCS_BUTTONS style.
Requires common controls v 4.70

forceiconleft - TCS_FORCEICONLEFT Icons are aligned with the left edge of each fixed-width tab. This style
can only be used with the TCS_FIXEDWIDTH style

forcelabelleft TCS_FORCELABELLEFT Left-aligns both the icon and label

hottrack h TCS_HOTTRACK causes whichever tab the mouse is hovering over to be highlighted blue.

focusnever n TCS_FOCUSNEVER Specifies that a tab never receives the input focus

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 220 of 259
page 220 of 259

II.16.2 Messages and Services

The following named messages are defined for tab controls and can be used in
dialog.send_message:

Named Messages for Tab Controls

this
message

name

or
this

letter
#define’d symbol

wParam
meaningfu

l

lParam
meaningful

setitemsize z TCM_SETITEMSIZE no integer

removeimage r TCM_REMOVEIMAGE yes no

setpadding p TCM_SETPADDING no integer

getrowcount c TCM_GETROWCOUNT no no

setfocus - TCM_SETCURFOCUS yes no

getfocus - TCM_GETCURFOCUS no no

setmintabwidth m TCM_SETMINTABWIDTH no integer

deselectall d TCM_DESELECTALL yes no

highlight h TCM_HIGHLIGHTITEM yes integer

Tab number, where needed, is always in wParam and 0-based.

TCM_SETITEMSIZE (width and height, in pixels) and TCM_SETPADDING (horizontal and vertical
padding, in pixels), take x, y as arguments forced into a single integer thusly:

(x & 0xffff) | ((y & 0xffff) << 16)

TCM_HIGHLIGHTITEM takes lParam: fHighlight, the highlight state to be set. If this value is
TRUE, the tab is highlighted; if FALSE, the tab is set to its default state.

TCM_DESELECTALL: wParam specifies the scope of the item deselection. If this parameter is set
to FALSE, all tab buttons are reset. If it is set to TRUE, then all tab items except for the one
currently selected are reset.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 221 of 259
page 221 of 259

II.16.3 Removing Tabs

Use the clear service to remove all tabs or a single tab from the control; provide the index
<tab_no> index (lowest legal value 0 or 1) as a second argument if you want to delete a
tab; if you do, all controls contained in that tab will be hidden.

II.16.4 Colours

Colours can’t be set for a tab controls , so the <foreground> and <background>
parameters of define_control and calls to set_colour are ignored.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 222 of 259
page 222 of 259

II.17: The Treeview Control
<control_type> value: treeview

Used in sample scripts:
dialogPluginDemo4.powerpro, dialogPluginDemo5.powerpro

Use set_value or one of its aliases (e.g. add) to add or modify nodes of a treeview control.
dialog.set_value(<dialog_handle>, <treeview_ctrl_id>, <node_id>, <insert_after>,

<text>, [<image_number>, [, <selected_image_number>]])
dialog.set_value(<dialog_handle>, <treeview_ctrl_id>, <node_id>, <attribute>,

<new_value>)
dialog.set_value(<dialog_handle>, <treeview_ctrl_id>, <node_id>, "imagesize", <x>,

<y>)

You must only invoke set_value after a dialog is created or run.

set_value returns the HTREEITEM of the item inserted or modified.

You can also use aliases for set_value if you use the handle.service syntax, e.g.
<dialog_handle>.add(<treeview_ctrl_id>, <node_id>, <insert_after>, <text>,

[<image_number>,
[, <selected_image_number>]]])

<dialog_handle> Required: A handle returned by dialog.define. See Section 11.1

<treeview_ctrl_id> Required: Must be the control id (see Section 11.3) of a treeview
control.

<node_id>: the handle to a treeview item (node) under which to insert or find a node;
either one returned by a previous call to set_value or get_value, or 0 to inset or change a
node at root level.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 223 of 259
page 223 of 259

<insert_after> Required: One of these values:

if #defined
symbol means

first
0
null string

TVI_FIRST Inserts the node at the beginning of the list.

last TVI_LAST Inserts the node at the end of the list.

sort TVI_SORT Inserts the node into the list in alphabetical order.

<attribute> Required for variant of set_value for which it's used: one of:

name <new_value>

image number in image
list

selected number in image
list

text text

<text> Required (except with and "imagesize" keywords): The node’s text

<image_number> Required, <selected_image_number> Optional: index (lowest legal
value 0 or 1) of icon previously added to the treeview control using set_image. If no image
desired or available, use a number less than lowest legal value..

You can retrieve properties of treeView nodes, or get their properties, using
dialog.get_value(<dialog_handle>, <node_id>, <attribute_or_related_node>)
<dialog_handle>, <node_id> Required: as for set_value, see above.

<attribute_or_related_node> Required: Can either be either on of the attributes used with
set_value; or one of;

name means

children the number of children of <node_id>)

state state: one or more of these values, or'ed together
(and are defined in dialog-related_defines.txt)

or one of the following <related_node> names or the numeric values defined in dialog-
related_defines.txt.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 224 of 259
page 224 of 259

name #defined symbol name #defined symbol

root TVGN_ROOT nextvisible TVGN_NEXTVISIBLE

next TVGN_NEXT previousvisible TVGN_PREVIOUSVISIBLE

previous TVGN_PREVIOUS selected TVGN_CARET

parent TVGN_PARENT lastvisible TVGN_LASTVISIBLE

child TVGN_CHILD

firstvisible TVGN_FIRSTVISIBLE

If you retrieve “state”, you’ll get some combination of bits as defined in the following table.

node state meaning

TVIS_CUT The item is marked.

TVIS_DISABLED The item is disabled and is drawn using the standard
disabled style and color.

TVIS_EXPANDED The item's list of child items is currently expanded.

TVIS_EXPANDEDONCE The item's list of child items has been expanded at least
once.

TVIS_FOCUSED The item has the focus and is drawn with the standard
focus rectangle.

TVIS_SELECTED The item is selected

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 225 of 259
page 225 of 259

II.17.1 Styles

In addition to styles applying to all controls, there are:

Styles for TreeView Controls

this style
name

or
this

letter
#define’d symbol means

nobuttons n
removes default styles
TVS_HASBUTTONS,
TVS_LINESATROOT and
TVS_HASLINES

TVS_HASBUTTONS Displays plus (+) and minus (-) buttons next to parent items to
expand or collapse the parent item's list of child items. TVS_HASLINES uses lines to
show the hierarchy of items. The lines are drawn to link the parent and child items;
TVS_LINESATROOT uses lines to link items at the root of the list view

notalways - removes default style
TVS_SHOWSELALWAYS

TVS_SHOWSELALWAYS causes a selected item to remain selected when the tree-view
control loses focus.

rtlreading - TVS_RTLREADING Causes text to be displayed from right-to-left

notooltips - TVS_NOTOOLTIPS Disables ToolTips

checkboxes c TVS__CHECKBOXES Enables check box controls for items, which is displayed only if an image is associated
with the item.

trackselect t TVS_TRACKSELECT Enables hot tracking

singleexpand e TVS_SINGLEEXPAND Causes the item being selected to expand and the item being unselected to collapse
upon selection

fullrowselect f TVS_FULLROWSELECT
Enables full-row selection; the entire row of the selected item is highlighted, and clicking
anywhere on an item's row causes it to be selected. This style cannot be used in
conjunction with the TVS_HASLINES style.

noscroll - TVS_NOSCROLL Disables both horizontal and vertical scrolling in the control. The control will not display
any scroll bars.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 226 of 259
page 226 of 259

nonevenheight h TVS_NONEVENHEIGHT Sets the height of the items to an odd height with the TVM_SETITEMHEIGHT message.
By default, the height of items must be an even value

II.17.2 Messages

The following named messages are defined and can be used in dialog.send_message:

Named Messages for TreeView Controls

this
message

name
or this
letter #define’d symbol wParam

meaningful
lParam

meaningful description

expand x TVM_EXPAND yes; details handle to
HTREEITEM

expands or collapses the list of child items associated
with the specified parent item

getcount c TVM_GETCOUNT no no returns the number of items in the tree view window.

getindent - TVM_GETINDENT no no gets no pixels child items are indented relative to parent
items

setindent i TVM_SETINDENT indent, pixels no sets the amount of indentation for a child item

selectitem s TVM_SELECTITEM yes; TVN_
const

handle to
HTREEITEM

selects the given tree view item, scrolls it into view, and
redraws it; see dialog-related_defines.txt for TVN_
values

visiblecount v TVM_GETVISIBLECOUNT no no gets count of items that will fit in the control's client
window

sortchildren o TVM_SORTCHILDREN no handle to
HTREEITEM sorts the child items of the given parent item

ensurevisible v TVM_ENSUREVISIBLE no handle to
HTREEITEM

ensures that the tree view item is visible, and expands
the parent item or scrolls the tree view window if
necessary

setinsertmark k TVM_SETINSERTMARK 0/1, 1 = after handle to sets the insertion mark; null handle removes it

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 227 of 259
page 227 of 259

HTREEITEM

setitemheight h TVM_SETITEMHEIGHT iItemHeight no sets item height

setscrolltime t TVM_SETSCROLLTIME msec no set maximum scroll time

getitemstate - TVM_GETITEMSTATE HTREEITEM mask compose mask from TVIS_ values; see dialog-
related_defines.txt:

The following TVM_EXPAND wParam values are defined in dialog-related_defines.txt:

TVM_EXPAND
codes value

TVE_COLLAPSE 0x0001 Collapses the list.

TVE_COLLAPSERESET 0x8000 Collapses the list and removes the child items. Note
that TVE_COLLAPSE must also be specified.

TVE_EXPAND 0x0002 Expands the list.

TVE_EXPANDPARTIAL 0x4000 Partially expands the list. In this state the child items
are visible and the parent item's plus sign (+),
indicating that it can be expanded, is displayed. This
flag must be used in combination with the
TVE_EXPAND flag.

TVE_TOGGLE 0x0003 Collapses the list if it is currently expanded or
expands it if it is currently collapsed.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 228 of 259
page 228 of 259

II.17.3 Colours

In both dialog.define_control and dialog.set_colour, the <foreground> parameter, if a number (possible generated by dialog.rgb) or a
colour name, it will send a TVM_SETTEXTCOLOR message to the control. Otherwise, the <foreground> parameter can be one of the
following keywords, with the second <background> parameter the colour name or RGB value you wish to set:

word #define means

background TVM_SETBKCOLOR the background colour

text TVM_SETTEXTCOLOR text colour

insertmark TVM_SETINSERTMARKCOLO
R

insert mark colour

line TVM_SETLINECOLOR line colour

You can use the same colour parameters in define_control but "text" doesn’t seem to do what it's meant to.

II.17.4 Removing Nodes

Use the clear service to remove all nodes or a single node from the control. Provide the <node_id> as a second argument if you want to
delete a specific node.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 229 of 259
page 229 of 259

II.18: The Rich Edit Control
<control_type> value: richedit

Used in sample script regexDialog.powerpro (via associated dialog_definition_file)

The dialog plugin supports two other kinds of edit controls (plain edit and scintilla). See
section II.18.4 "Which Type of Edit Control?" comparing them..

The standard rich edit control doesn’t have a context menu; I've added one to emulate that
shown in plain vanilla editboxes or scintilla controls.

Use get_value to get text or the font description for a richedit control.

In addition to the usual values of get_value <property> s, you can also use the <property>
"selectlen" to return the length of the current selection and "selected" or "select" to return
the selection itself.

Use set_value or one of its aliases (e.g. set, modify) to change the text of a rich edit
control.

set_value(<dialog_handle>, <richedit_ctrl_id>, <value> [, <property>
[, <codepage>]])

set_value(<dialog_handle>, <richedit_ctrl_id>, <value> , "rtf")

Rich edit controls can now be assigned a <right_click_command> with define,
define_control or set_response, overriding the default context menu the plugin supplies.
(But a “right” <mouse_event> with a keyboard modifier like “ctrl” won’t override it; nor will
any other mouse event, e.g. “middle”).

<dialog_handle> Required: A handle returned by dialog.define. See Section 11.1

<ricedit_ctrl_id> Required: Must be the control id (see Section 11.3) of a rich edit control.

<value> Required: The new text. MSDN says "This text is an ANSI string, unless the code
page is 1200 (Unicode), in which case it's a Unicode string. If /lParam/ starts with a valid RTF
ASCII sequence, for example, {\rtf or {urtf, the text is read in using the RTF reader"

"rtf": Use this if you're providing an RTF string in <value>.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 230 of 259
page 230 of 259

<property> Optional: The MSDN docs say "any reasonable combination of the following
flags":

#define valu
e means

ST_DEFAULT 0 Deletes the undo stack, discards rich-text
formatting, replaces all text.

ST_KEEPUNDO 1 Keeps the undo stack.

ST_SELECTION 2 Replaces selection and keeps rich-text formatting.

ST_NEWCHARS 4

<codepage> Optional: MSDN says "The code page used to translate the text to Unicode. If
codepage is 1200 (Unicode code page), no translation is done. If codepage is CP_ACP, the
system code page is used." If omitted, the default for the control is used.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 231 of 259
page 231 of 259

Use get_value or one of its aliases (e.g. set, modify) to fetch the text of a rich edit control.

get_value(<dialog_handle>, <richedit_ctrl_id> [, "rtf"])
<richedit_ctrl_handle>.get(["rtf"])

get_value(<dialog_handle>, <richedit_ctrl_id>, "select")
<richedit_ctrl_handle>.get("select")

With the "rtf" argument you'll get RTF back, with any formatting included.

With the "select" argument (or any argument beginning "select"), you'll get back currently
selected text.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 232 of 259
page 232 of 259

II.18.1 Styles

In addition to styles applying to all controls, you can use the styles that apply to plain edit
controls, and also :

Styles for Rich Edit Controls

this style name
or

this
letter

#define’d symbol means

emulatesysedit - SES_EMULATESYSEDIT When this bit is on, rich edit attempts to
emulate the system edit control

beeponmaxtext - SES_BEEPONMAXTEXT
Rich Edit will call the system beeper if the
user attempts to enter more than the
maximum characters

extendbackcolor - SES_EXTENDBACKCOLOR Extends the background color all the way to
the edges of the client rectangle

usecrlf - SES_USECRLF XP SP1: Turns on Text Services Framework
(TSF) support

uppercase - SES_UPPERCASE Converts all input characters to uppercase

lowercase - SES_LOWERCASE Converts all input characters to lowercase

scrollonkillfocus - SES_SCROLLONKILLFOCUS When KillFocus occurs, scroll to the
beginning of the text

xltcrcrlftocr - SES_XLTCRCRLFTOCR

Turns on translation of CRCRLFs to CRs.
When this bit is on and a file is read in, all
instances of CRCRLF will be converted to
hard CRs internally. This will affect the text
wrapping. Note that if such a file is saved as
plain text, the CRs will be replaced by
CRLFs. This is the .txt standard for plain
text.

draftmode - SES_DRAFTMODE

XP SP1: Use draftmode fonts to display text.
Draft mode is an accessibility option where
the control displays the text with a single
font; the font is determined by the system
setting for the font used in message boxes.
For example, accessible users may read text
easier if it is uniform, rather than a mix of
fonts and styles

hidegridlines - SES_HIDEGRIDLINES

XP SP1: If the table gridlines width is zero,
gridlines are not displayed. This is equivalent
to the hide gridlines feature in Microsoft
Word's table menu

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 233 of 259
page 233 of 259

II.18.2 Messages

Most of the messages applicable to edit controls also apply to rich edit controls. Consult MSDN concerning different usage for plain and
rich edit controls.

The following named messages are defined and can be used in dialog.send_message. Without copying enormous chunks of the
relevant part of MSDN site, I can’t provide enough information here to tell you everything you need to use most messages; look them up.

.

Messages Applicable to Rich edit controls

this message
name

or this
letter #define’d symbol wParam

meaningful
lParam

meaningful description

posfromchar - EM_POSFROMCHAR POINTL* integer (chr ndx) retrieves the client area coordinates of a
specified character

charfrompos - EM_CHARFROMPOS no POINTL* Retrieves information about the character
closest to a specified point in the client area

linelength EM_LINELENGTH no yes shows or hides one of the scroll bars in the Text
Host window

canpaste - EM_CANPASTE yes no determines whether a rich edit control can paste
a specified clipboard format

pastespecial - EM_PASTESPECIAL yes REPASTESPECIAL* pastes a specific clipboard format in a rich edit
control

exlinefromchar - EM_EXLINEFROMCHAR no 0 based idx char determines which line contains specified
character

exgetsel - EM_EXGETSEL no CHARRANGE* retrieves the starting and ending character
positions of the selection

exsetsel - EM_EXSETSEL no CHARRANGE* selects a range of characters and/or COM

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 234 of 259
page 234 of 259

Messages Applicable to Rich edit controls

this message
name

or this
letter #define’d symbol wParam

meaningful
lParam

meaningful description

objects

gettextrange - EM_GETTEXTRANGE no TEXTRANGE* retrieves a specified range of characters

hideselection - EM_HIDESELECTION 0/1 no hides or shows the selection

selectiontype - EM_SELECTIONTYPE no no determines the selection type

gettextex - EM_GETTEXTEX SETTEXTEX* string allows you to get all of the text from the rich edit
control in any particular code base you want

getseltext - EM_GETSELTEXT no string (out) retrieves the currently selected text

gettextlengthex - EM_GETTEXTLENGTHEX GETTEXTLENGTHE
X* no calculates text length in various ways

findtext - EM_FINDTEXT yes FINDTEXT* finds text

findtextex - EM_FINDTEXTEX yes FINDTEXTEX* finds text

findwordbreak - EM_FINDWORDBREAK yes yes (char ndx)
finds the next word break before or after the
specified character position or retrieves
information about the character at that position

setrect EM_SETRECT 0/1; absolute or
relative coordinates RECT*

set the formatting rectangle of a multiple-line edit control;
causes text to be redrawn

setrectnp - EM_SETRECTNP as above RECT* as above, but no redraw

requestresize - EM_REQUESTRESIZE no no
forces a rich edit control to send an
EN_REQUESTRESIZE notification message to
its parent window

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 235 of 259
page 235 of 259

Messages Applicable to Rich edit controls

this message
name

or this
letter #define’d symbol wParam

meaningful
lParam

meaningful description

setcharformat - EM_SETCHARFORMAT yes CHARFORMAT* sets character formatting

setparaformat - EM_SETPARAFORMAT no PARAFORMAT* or
PARAFORMAT2*

sets the paragraph formatting for the current
selection

seteventmask - EM_SETEVENTMASK no integer (flags)
sets the event mask, which notification
messages the control sends to its parent
window

setbkgndcolor - EM_SETBKGNDCOLOR yes (0/1) COLORREF* sets the background color

settextmode - EM_SETTEXTMODE yes no
set the text mode or undo level of a rich edit
control. The message fails if the control
contains any text

setoptions - EM_SETOPTIONS int; an ECOOP_
const int; an ECO_ const sets options, equivalent to some control styles

redo - EM_REDO no no redo the next action in the control's redo queue

canredo - EM_CANREDO no no determines whether there are any actions in the
control redo queue

setundolimit - EM_SETUNDOLIMIT limit no set the maximum number of actions that can
stored in the undo queue.

getundoname - EM_GETUNDONAME no no Rich Edit 2.0 and later: retrieve the type of the
next undo action, if any

getredoname - EM_GETREDONAME no no retrieve the type of the next action, if any, in the
control's redo queue

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 236 of 259
page 236 of 259

Messages Applicable to Rich edit controls

this message
name

or this
letter #define’d symbol wParam

meaningful
lParam

meaningful description

stopgrouptyping - EM_STOPGROUPTYPING no no

stop the control from collecting additional typing
actions into the current undo action. The control
stores the next typing action, if any, into a new
action in the undo queue

autourldetect - EM_AUTOURLDETECT 0/1 no enables or disables automatic detection of
URLs

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 237 of 259
page 237 of 259

II.18.3 Notifications

Rich edit controls only send out notifications if a mask is set to tell it so. I've
added code to automatically take care of that for the following notification codes:

EN_CHANGE
EN_CORRECTTEXT
EN_DRAGDROPDON
E
EN_DROPFILES
EN_MSGFILTER

EN_LINK
EN_MSGFILTER
EN_OBJECTPOSITION
S
EN_PROTECTED
EN_REQUESTRESIZE

EN_VSCROLL
EN_VSCROLL
EN_MSGFILTER
EN_SELCHANGE
EN_UPDATE

As usual you'll fine the values for all the above symbols in dialog-
related_defines.txt.

II.18.3 Colours

<foreground> and <background> parameters of define_control and set_colour
work, as does the <mouse_state> argument of set_colour. The latter may not
be ideal if you've formatted text in foreground or background colours; when the
control enters your defined <mouse_state> foreground or background colour
differences will disappear, and won’t reappear when returned to normal state.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 238 of 259
page 238 of 259

II.18.4 Which Type of Edit Control?

The dialog plugin supports no less than three types of edit controls. Talk about
overkill.

If all you want to do is display plain text, consider just using a static.

If you want to get text from the dialog user, you need some kind of edit box.

If all you want to do is input plain text, use the simple edit control.

Otherwise, your tradeoffs:

type of control: plain
edit

rich edit scintilla
edit

requires additional download? no
yes,
usually dll
plugin

yes;
SciLexer.dll

can text be formatted? no yes yes

context menu (select all, copy, etc)? yes yes yes

can make white space visible? no no yes

support zooming no no yes

brace highlighting and matching no no yes

wrap mode control with
difficulty

with
difficulty yes

undo/redo support no yes yes

line end convention control no no yes

input from and output to rich text format no yes no

quality of available documentation ok terrible excellent

scripter's interface simple terrible simple

fully compatible with simple edit
control duh no no

I much prefer the scintilla interface over the rich edit one. GUI programmers
moan about the Microsoft richedit API, for good reason. It's been through many
versions, which don't necessarily improve with maturity. To do anything
sophisticated you'll almost certainly need structs, which means getting your
head around the dll plugin.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 239 of 259
page 239 of 259

The main limitation I've found so far is there's no easy way to get a usable
representation of formatted text in or out of a scintilla control (analogous to RTF
for rich edits).

There a lot of scintilla features I haven't tried; macro recording, print control,
autocmpletion, lexer control, auto scrolling, etc.

Wrap mode: for simple and rich edit controls, you can fake you can set the
hscroll and vscroll and/or multiline for a control, but you can’t change those
styles at run time; so to get the appearance of turning wrap on and off, you have
to make two controls, apply different styles to each, hide one, then when user
desires to switch wrap mode, switch controls. Believe me, it's tedious; I did it in
regex\regexDialog.powerpro.

Scripter's interface: To do anything amusing with any kind of edit control
(beyond setting and getting its text, for which you have get_value and
set_value), mostly you have to send messages (so learn about the
send_message service).

The rich edit interface has grown like topsy, and shows it. Documentation on
how it works can be hard to find. Many actions require constructing a struct,
which means you got to use the dll plugin. The scintilla interface is, by
comparison, very clean: (almost) everything is done with messages that take
simple numeric or string arguments.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 240 of 259
page 240 of 259

II.19: The Scintilla Control
<control_type> value: scintilla

Used in sample scripts: regexDialogScintilla.powerpro (via associated
dialog_definition_file)

The dialog plugin supports two other kinds of edit controls (plain edit rich edit).
See section II.18.4 "Which Type of Edit Control?" comparing them..

To get scintilla controls to work, you need SciLexer.dll in your PowerPro plugins
or installation folders, or on your path; it's obtainable from
http://www.scintilla.org/, the file wscite*.zip.

An edit control built on the SciLexer engine can do (almost) everything a rich
edit control can do; it can also be persuaded to do automatic lexical highlighting;
show and hide white space; adjust translucency using an alpha value; brace
highlighting; zooming; undo and redo; set margins and tabs; assign markers to
text; and lots of other goodies. It's all done with messages; see below.

Use get_value to get text or the font description for an scintilla control

In addition to the usual values of get_value <property> s, you can also use the
<property> "selectlen" to return the length of the current selection and "selected"
or "select" to return the selection itself.

Use set_value or one of its aliases (e.g. set, modify) to change the text of an
edit control.

With set_font, or get_value with a <property> of "font", the strikethrough option
is ignored, as it doesn’t seem available in scintilla's messages for style
modification.

Scintilla controls can now be assigned a <right_click_command> with define,
define_control or set_response, overriding the built-in context menu. (But a
“right” <mouse_event> with a keyboard modifier like “ctrl” won’t override it; nor
will any other mouse event, e.g. “middle”).

II.19.1 Styles

In addition to styles applying to all controls, you can use the styles that apply to
richedit controls.

II.19.2 Messages

All the named messages applicable to rich edit controls also apply to scintilla
controls; there's a list of exceptions at the end of scintilla-related_defines.txt. To
quote the url below:

"Scintilla tries to be a superset of the standard windows Edit and RichEdit
controls wherever that makes sense. As it is not intended for use in a word

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 241 of 259
page 241 of 259

processor, some edit messages can not be sensibly handled. Unsupported
messages have no effect….[some listed] messages are currently supported
to emulate existing Windows controls, but they will be removed in future
versions of Scintilla. If you use these messages you should replace them
with the Scintilla equivalent."

There are a ton of messages specifically for scintilla controls; I haven't bothered
doing named messages. See scintilla-related_defines.txt for a list; see
http://scintilla.sourceforge.net/ScintillaDoc.html on how to use them.

II.19.3 Colours

<foreground> and <background> parameters of define_control and set_colour
work by sending SCI_STYLESETFORE or SCI_STYLESETBACK messages for
all styles of the relevant control.

<mouse_state>s of set_colour work. Again, it's done by changing all styles.
Once a control leaves a particular <mouse_state>, all styles revert to their
previous colours. Even so <mouse_state>s may not be ideal if you've formatted
text in foreground or background colours; when the control enters your defined
<mouse_state> foreground or background colour differences will temporarily
disappear.

http://www.scintilla.org/

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 242 of 259
page 242 of 259

II.20: The Listview Control
<control_type> value: listview

Used in sample scripts:
dialogPluginDemo5.powerpro, dialogPluginDemo6.powerpro,
dialogPluginDemoNonNative.powerpro

Listview controls are about the most complex in the Microsoft set of dialog
components. They have numerous variants, roughly corresponding to the
various views you can have in an Explorer window. Listviews have rows and
columns; invididual items can have text and/or icons.

So far I've implemented what you need to create and alter a listview (add and
alter rows, columns and items; remove rows and columns); but not what you
might need to retrieve alternations a user might make to one (changing item
values, reordering columns…). That will come (in the form of the get_value
service and its aliases).

http://scintilla.sourceforge.net/ScintillaDoc.html

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 243 of 259
page 243 of 259

Use set_value or one of its aliases (e.g. add) to add or modify nodes of a
listview control.

dialog.set_value(<target>, "col", <column_no>, <width> [, <format>]])
dialog.set_value(<target>, "row", <row_no>, <starting_subitem_no>,

<item_text> [, <item_text>, …]])
dialog.set_value(<target>, "item", <attribute>, <new_value>)
dialog.set_value(<target>, "select", <row_no_beg> [, <row_no_end>])
dialog.set_value(<target>, "focus", <row_no>)
dialog.set_value(<target>, "cut", <row_no>)

You must only invoke set_value taking a <dialog_handle> and a
<listview_ctrl_id> as <target> after a dialog is created or run.

You can use aliases for set value if you use the handle.service syntax, e.g.
<dialog_handle>.add(<listview_ctrl_id>, "row", <row_no>,

<starting_subitem_no>, <item_text>)
Using a <window_ handle_ to_ remote_ control> as a <target> can be
dangerous. It's okay if you just want change selection or focus; but I wouldn't
try to alter the view, or contents of a listview owned by another process. That
process will believe its listview has certain contents or is presented in a certain
way; you will change that; and goodness knows what happens next.

Here are the variants:

set_value(<target>, "col", <column_no>, <width> [, <format>]])

Add new column or modify existing one; probably bad idea for remote control.
<column_no> lowest legal value is 0 or 1.

<format>: only applies when third parameter is "col": specifies the alignment
of the column heading and the subitem text in the column; one of

keywor
d

equivalent #define text is

centre LVCFMT_CENTER centered.

left LVCFMT_LEFT left-aligned

right LVCFMT_RIGHT right-aligned

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 244 of 259
page 244 of 259

set_value(<target>, "row", <row_no>, <starting_col_no>, <item_text> [,
<item_text>, …]])

Add new row or modify existing one; probably bad idea for remote control.

<row_no>, <starting_col_no> Required: lowest legal values 0 or 1. If
<starting_col_no> is greater than the lowest legal value (therefore not setting
the row’s label), the row <row_no> must already exist and label already set
by a previous call to set_value with “row” or “item”; otherwise you get an error
message.

<item_text>: text to use to initialise item; one for each column (“subitem”)
you want to set.

set_value(<target>, "item", <row_no>, <col_no>, <item_text> [, <image_no>])

Changes an attribute of item; probably bad idea for remote control.

<row_no>, <col_no> Required: lowest legal values 0 or 1. If <col_no> is
greater than the lowest legal value (therefore not setting the row’s label), the
row <row_no> must already exist and label already set by a previous call to
set_value with “row” or “item”; otherwise you get an error message.

<item_text> Required: Text of subitem you want to set.

 <image_no> Optional: lowest legal values 0 or 1.

set_value(<target>, "select", <row_no_beg> [, <row_no_end>])

Selects row(s). <row_no_beg> and <row_no_end> lowest legal values 0 or 1.

set_value(<target>, "deselect", <row_no_beg> [, <row_no_end>])

Unselects row(s). <row_no_beg> and <row_no_end> lowest legal values 0 or
1.

set_value(<target>, "focus", <row_no>)

Set focus to specified row; lowest legal value 0 or 1.

set_value(<target>, "cut", <row_no>)

Set row <row_no> (lowest legal value 0 or 1) to “cut” state. Bet it’s not a
good idea for a remote control

set_value(<target>, "view",<view_type>)

Probably bad idea for remote control

set_value(<target>, "selectAll")

Select all rows.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 245 of 259
page 245 of 259

set_value(<target>, "selectInvert")

Inverts current row selection.

set_value(<target>, "selectClear")

Unselects everything.

set_value(<target>, "view", <viewType>)

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 246 of 259
page 246 of 259

Changes listview visual form:

LVM_SETVIEW

largeicons
large LV_VIEW_ICON

details
report LV_VIEW_DETAILS

list LV_VIEW_LIST

smallicons
smallicon LV_VIEW_SMALLICON

Minimum operating systems Windows XP

In the Explorer Folder Options - General - Tasks, if you have the "Show
common tasks in folders" option selected instead of "Use Windows classic
folders" the function will fail.

ControlListView 'ViewChange' fails:
http://www.autoitscript.com/forum/index.php?showtopic=11666&hl=

About List-View Controls
http://msdn2.microsoft.com/en-us/library/ms670558.aspx - ListView_Styles_and_Views

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 247 of 259
page 247 of 259

Use get_value or one of its aliases to retrieve information from or about a
listView control.

dialog.get_value(<target>)
dialog.get_value(<target>, 0, <column_no>, [<vec>])
dialog.get_value(<target>, <row_no>, [[<vec>])
dialog.get_value(<target>, <row_no> , <column_no>)
dialog.get_value(<target>, "rows" | "rowcount")
dialog.get_value(<target>, "cols" | "colCount")
dialog.get_value(<target>, "selected" [, <vec>] [, <max_rows>

[, <column_no>]])
dialog.get_value(<target>, "focused" [, <vec>] [, <column_no>])
dialog.get_value(<target>, "selectedIndex")
dialog.get_value(<target>, "selectedallindex")
dialog.get_value(<target>, "selectedCount")
dialog.get_value(<target>, "focusedRowNo")
dialog.get_value(<target>, <state>, <row_no> [, <column_no>])

You must only invoke get_value taking a <dialog_handle> and a
<listview_ctrl_id> after a dialog is created or run.

You can also use aliases for set value if you use the handle.service syntax,
e.g.

<dialog_handle>.get(<listview_ctrl_id>, <row_no>, <subitem_no>)

Here are the variants:

get_value(<target>)
get_value(<target>, "rows" | "rowcount")

Returns number of rows.

get_value(<target>, "cols" | "colCount")

Returns number of columns.

get_value(<target>, "selectedCount")

Returns number of selected rows

get_value(<target>, "focusedRowNo")

returns index of row with focus (based at 0 or 1)

get_value(<target>, "selectedIndex" [, <howMany>])

Returns indices of selected rows (based at 0 or 1), space separated. If
<howMany> is absent, or less than base, returns all of them.

http://msdn2.microsoft.com/en-us/library/ms670558.aspx#ListView_Styles_and_Views
http://www.autoitscript.com/forum/index.php?showtopic=11666&hl=

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 248 of 259
page 248 of 259

get_value(<target>, <row_no> , <column_no>)

Returns one cell (subitem). <row_no> and <column_no> bases lowest legal
value 0 or 1.

get_value(<target>, <vec>])

Returns the entire contents of the listview..

<vec>] := ["vec" | <handle_to_vec>]. If you specify “vec” a two-dimensional
vector of exactly the correct size will be created and it’s handle returned. If
you pass in <handle_to_vec> that vector will be filled and <handle_to_vec>
returned.

get_value(<target>, <row_no>, [<vec>])

Returns the contents of a row. <row_no> (lowest legal value 0 or 1).

Without <vec> returns a string, items from row separated are separated by
tab (\t).

If you specify “vec”, a one-dimensional vector of exactly the correct size will
be created.

get_value(<target>, 0, <column_no>, [<vec>])

Returns the contents of a column; <column_no> (lowest legal value 0 or 1).

Without <vec> returns a string; items from the column are separated by
newline (\n).

If you specify “vec”, a one-dimensional vector of exactly the correct size will
be created.

get_value(<target>, "selected" [, <vec>] [, <max_rows> [, <column_no>]])

Returns the contents of selected rows. <column_no> (lowest legal value 0 or
1); if it’s omitted, entire rows are returned.

Without <vec> returns a string; items in each row are separated are
separated by tab (\t); rows are separated by newline (\n).

If you specify “vec”, a two-dimensional vector of exactly the correct size will
be created.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 249 of 259
page 249 of 259

get_value(<target>, "focused" [, <vec>] [, <column_no>])

Returns the contents of row with focus. <column_no> (lowest legal value 0 or
1); if it’s omitted, entire row is returned.

Without <vec> returns a string, items from row separated are separated by
tab (\t).

If you specify “vec”, a one-dimensional vector of exactly the correct size will
be created.

get_value(<target>, <state>, <row_no> [, <column_no>])

<state>: can be one of:

keyword equivalent #define

isselected LVIS_SELECTED

isfocused LVIS_FOCUSED

iscut LVIS_CUT

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 250 of 259
page 250 of 259

II.20.1 Styles

In addition to styles applying to all controls, there are:

Styles for ListView Controls

this style
name

or
this

letter
#define’d symbol means

alignleft l LVS_ALIGNLEFT items are left-aligned in icon and small icon view

aligntop t LVS_ALIGNTOP items are aligned with the top of the control in
icon and small icon view

autoarrange a LVS_AUTOARRANGE icons are automatically kept arranged in icon view
and small icon view.

editlabels e LVS_EDITLABELS
Allows item text to be edited in place. The parent
window must process the LVN_ENDLABELEDIT
notification message.

icon i LVS_ICON Specifies icon view

list l LVS_LIST Specifies list view

nocolumnheader - LVS_NOCOLUMNHEADER
Specifies that a column header is not displayed in
report view. By default, columns have headers in
report view.

nolabelwrap - LVS_NOLABELWRAP Displays item text on a single line in icon view. By
default, item text can wrap in icon view.

noscroll - LVS_NOSCROLL Disables scrolling. All items must be within the
client area

nosortheader - LVS_NOSORTHEADER
Colume headers do not work like buttons. This
style is useful if clicking a column header in report
view does not carry out an action, such as sorting

report r LVS_REPORT Specifies report view

showselalways - LVS_SHOWSELALWAYS Always show the selection, if any, even if the
control does not have the focus

singlesel - LVS_SINGLESEL Allows only one item at a time to be selected. By
default, multiple items can be selected

smallicon - LVS_SMALLICON Specifies small icon view

sortascending - LVS_SORTASCENDING Sorts items based on item text in ascending order

sortdescending - LVS_SORTDESCENDING Sorts items based on item text in descending
order

fullrowselect 0 LVS_EX_FULLROWSELECT v 4.70. When an item is selected, the item and all

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 251 of 259
page 251 of 259

Styles for ListView Controls

this style
name

or
this

letter
#define’d symbol means

its subitems are highlighted; only in conjunction
with the LVS_REPORT

gridlines g LVS_EX_GRIDLINES
v 4.70. Displays gridlines around items and
subitems; only in conjunction with the
LVS_REPORT style

flatsb f LVS_EX_FLATSB Enables flat scroll bars in the list view

headerdragdrop h LVS_EX_HEADERDRAGDROP
v. 4.70. Enables drag-and-drop reordering of
columns in a list-view control; only in conjunction
with LVS_REPORT.

labeltip 0 LVS_EX_LABELTIP

v 5.80. If a partially hidden label in any list view
mode lacks ToolTip text, the list-view control will
unfold the label. If this style is not set, the list-view
control will unfold partly hidden labels only for the
large icon mode.

multiworkareas m LVS_EX_MULTIWORKAREAS

v 4.71. If control has LVS_AUTOARRANGE style,
the control will not autoarrange its icons until one
or more work areas are defined. This style must
be set before any work areas are defined and any
items have been added to the control.

oneclickactivate o LVS_EX_ONECLICKACTIVATE

v 4.70. The list-view control sends an
LVN_ITEMACTIVATE notification message to the
parent window when the user clicks an item;
enables hot tracking.

twoclickactivate 0 LVS_EX_TWOCLICKACTIVATE

v 4.70. The list-view control sends an
LVN_ITEMACTIVATE notification message to the
parent window when the user double-clicks an
item; enables hot tracking.

regional 0 LVS_EX_REGIONAL

v 4.71. Sets the list view window region to include
only the item icons and text using
SetWindowRgn; only in conjunction with
LVS_ICON

simpleselect s LVS_EX_SIMPLESELECT

v 6.00. In icon view, moves the state image of the
control to the top right of the large icon rendering.
In views other than icon view there is no change.
When the user changes the state by using the
space bar, all selected items cycle over, not the
item with the focus.

subitemimages s LVS_EX_SUBITEMIMAGES v 4.70. Allows images to be displayed for
subitems; only in conjunction with LVS_REPORT

trackselect 0 LVS_EX_TRACKSELECT v 4.70. Enables hot-track selection in a list-view
control. Hot track selection means that an item is

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 252 of 259
page 252 of 259

Styles for ListView Controls

this style
name

or
this

letter
#define’d symbol means

automatically selected when the cursor remains
over the item for a certain period of time

underlinecold c LVS_EX_UNDERLINECOLD
v 4.71. Causes those non-hot items that may be
activated to be displayed with underlined text;
requires LVS_EX_TWOCLICKACTIVATE

underlinehot h LVS_EX_UNDERLINEHOT

4.71. Causes those hot items that may be
activated to be displayed with underlined text;
requires LVS_EX_ONECLICKACTIVATE or
LVS_EX_TWOCLICKACTIVATE

borderselect LVS_EX_BORDERSELECT v 4.71. Changes border color when an item is
selected, instead of highlighting the item

checkboxes LVS_EX_CHECKBOXES

v 4.70. Enables check box controls for items; the
control creates and sets a state image list with
two images State image 1 is the unchecked box,
state image 2 the checked box. Setting the state
image to zero removes the check box

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 253 of 259
page 253 of 259

II.20.2 Messages

The following named messages are defined and can be used in dialog.send_message:

Messages Applicable to List View Controls

this message
name

or
this

letter
#define’d symbol

wParam
meaningfu

l

lParam
meaningful

arrange - LVM_ARRANGE LVA_ const no arranges items in icon view; see LVA_ constants in
dialog-related_defines.txt

deleteallitems - LVM_DELETEALLITEMS no no removes all items (rows) from a list view window

deletecolumn - LVM_DELETECOLUMN int (col no) no deletes a column; all subitem will be removed

deleteitem - LVM_DELETEITEM int (row no) no index of the row to delete

editlabel - LVM_EDITLABEL integer (item
no) no

begins in-place editing of the specified list view item’s
text
To cancel editing, set iItem to -1.
The control must have the focus before you send this
message

ensurevisible - LVM_ENSUREVISIBLE int (row no) partial ok (0/1) ensures that a row is entirely or at least partially visible

finditem - LVM_FINDITEM yes LV_FINDINFO* retrieves the text of a listview subitem

getbkcolor - LVM_GETBKCOLOR no no gets the background color of the list view window

getcolumn - LVM_GETCOLUMN yes LV_COLUMN* gets the attributes of a list view column

getcolumnwidth - LVM_GETCOLUMNWIDTH int (col no) no gets the width of a column in list view or report view

getcountperpage - LVM_GETCOUNTPERPAGE no no
calculates the number of items that can fit vertically in
the visible area of a view control in list view or report
view.

geteditcontrol - LVM_GETEDITCONTROL no no gets the hwnd of the edit window used to edit the item

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 254 of 259
page 254 of 259

Messages Applicable to List View Controls

this message
name

or
this

letter
#define’d symbol

wParam
meaningfu

l

lParam
meaningful

text in place

getisearchstring - LVM_GETISEARCHSTRING no string retrieves the incremental search string

getitem - LVM_GETITEM no LV_ITEM* gets a list view item 's (row's) attributes

getitemcount - LVM_GETITEMCOUNT no no gets the number of all the items (rows) in a listview

getitemposition - LVM_GETITEMPOSITION int (item no) POINT* gets the position of a list view item in standard icon and
small icon views

getitemrect - LVM_GETITEMRECT int (item no) RECT* (int code for
type)

gets the bounding rectangle for an item in the current
view; LVIR_ constants to set type

getitemspacing - LVM_GETITEMSPACING bool no spacing between items; wParam set to TRUE for small icon view, or to
FALSE for icon view.

getitemstate - LVM_GETITEMSTATE yes integer retrieves the state of an item (row)

getitemtext - LVM_GETITEMTEXT yes LV_ITEM* retrieves the text of a subitem (cell)

getnextitem - LVM_GETNEXTITEM int (item to
start at)

int (search flags;
LVNI_ consts)

searches for the next list view item starting from a
specified item. If an item does not have all of the
specified state flags set, the search continues with the
next item

getorigin - LVM_GETORIGIN no POINT* gets the list view origin

getselectedcount - LVM_GETSELECTEDCOUN
T no no retrieves number of selected items (rows)

getstringwidth - LVM_GETSTRINGWIDTH no string gets the minimum column width necessary to display the
given string

gettopindex - LVM_GETTOPINDEX no no gets the index of the first visible item (row)

getviewrect - LVM_GETVIEWRECT no RECT* gets the bounding rectangle of all of the items in a list
view in icon view

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 255 of 259
page 255 of 259

Messages Applicable to List View Controls

this message
name

or
this

letter
#define’d symbol

wParam
meaningfu

l

lParam
meaningful

hittest - LVM_HITTEST no LV_HITTESTINFO* determines which list view item (row) is at a specified
position

insertcolumn - LVM_INSERTCOLUMN no no inserts a new column

insertitem - LVM_INSERTITEM no LV_ITEM* inserts a new item (row)

redrawitems - LVM_REDRAWITEMS no MAKELONG(iF, iL) forces a redraw of a range of list view items

scroll - LVM_SCROLL no MAKELONG(dx, dy) scrolls the contents. If report view, dx must be 0 and dy
number of lines to scroll.

setcolumn - LVM_SETCOLUMN yes LV_COLUMN* sets the attributes of a column

setcolumnwidth - LVM_SETCOLUMNWIDTH yes integer sets the width of a column in report view or list view

setitem - LVM_SETITEM no LV_ITEM* sets a list view item's attributes

setitemcount - LVM_SETITEMCOUNT yes no sets the item count

setitemposition - LVM_SETITEMPOSITION yes MAKELONG(x, y) sets the position of a list view item in standard icon or
small icon view relative to the list view rectangle

setitemposition32 - LVM_SETITEMPOSITION32 yes POINT*
moves an item to a specified position in icon or small
icon view; differs from the LVM_SETITEMPOSITION
message in that it uses 32-bit coordinates

setitemstate - LVM_SETITEMSTATE yes LV_ITEM* sets the state of an item

setitemtext - LVM_SETITEMTEXT yes LV_ITEM* sets the text of a list view item or subitem.

update
-

LVM_UPDATE yes integer updates a list view item. If the list view has the
LVS_AUTOARRANGE style, the list view will be
arranged

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 256 of 259
page 256 of 259

II.20.3 Colours

In both dialog.define_control and dialog.set_colour, the <foreground>
parameter, if a number (possible generated by dialog.rgb) or a colour name, it
will send a LVM_SETTEXTCOLOR message to the control. Otherwise, the
<foreground> parameter can be one of the following keywords, with the second
<background> parameter the colour name or RGB value you wish to set:

word #define means colour applied to

background LVM_SETBKCOLOR background

text LVM_SETTEXTCOLOR text

textbackground LVM_SETTEXTBKCOLOR text background

insertmark LVM_SETINSERTMARKCOLO
R insertion mark

border LVM_SETOUTLINECOLOR border ("borderselect" style
required)

You can use the same colour parameters in define_control but "text" doesn’t
seem to do what it's meant to.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 257 of 259
page 257 of 259

II.20.4 Removing Columns or Items

Use the clear service with a second argument beginning "i" or "r" (not case
sensitive) to remove items (rows); if there is no third argument, all items are
removed; if there is a third argument, it should be the index index (lowest legal
value 0 or 1) of a row (item) to remove.

Use the clear service with a second argument beginning "c" (not case
sensitive) to remove columns; the third argument should be the index index
(lowest legal value 0 or 1) of a column to remove. You can’t remove all columns
in a single call to clear.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 258 of 259
page 258 of 259

II.21: The Animation Control
<control_type> value: Animation

Used in sample script: dialogPluginDemo7.powerpro

Animation controls are dead simple. Three specialised styles, three messages,
that's it.

All you can do with them is play .avi files. I don’t think you can force the avi clip
to resize.

II.21.1 Styles

In addition to styles applying to all controls, there are:

Styles for Animation Controls

this style
name

or
this

letter
#define’d
symbol Causes the AVI clip…

transparent t ACS_TRANSPARENT
to be drawn using a transparent background
rather than the background color specified in
the AVI clip

autoplay a ACS_AUTOPLAY
to start playing as soon as it is opened. When
the clip is done playing, it will automatically be
repeated

centre c ACS_CENTER

to be centred in the control's window and
leaves the animation control's size and position
unchanged when the AVI clip is opened. If this
style is not specified, the control will be resized
when the AVI clip is opened to the size of the
images in the AVI clip.

dialog plugin v 1.19:
21 January 2009

a powerpro plugin to construct and run dialogs
by Alan Campbell

 page 259 of 259
page 259 of 259

II.21.2 Messages

The following named messages are defined and can be used in
dialog.send_message:

Named Messages for Animation Controls

this message
name

or
this

letter
#define’d symbol

wParam
meaningf

ul

lParam
meaningful

open o ACM_OPEN no string

close c ACM_OPEN no no

play p ACM_PLAY int; repeats,
-1 forever

from, to frames;
details

stop s ACM_STOP no no

	Styles For Some Common Controls (header controls, toolbars, and statusbars)
	1.0 Overview
	1.1 This Document
	1.2 What’s New In This Version
	1.3 Requirements
	2.1 Reporting Bugs, Requesting Enhancements
	2.2 Related plugins

	3.0 File list
	4.0 Installation
	5.0 Uninstall
	7.0 Testing and Sample Scripts
	7.1 Sample Scripts Included with the Plugin Distribution
	7.2 Other Scripts

	8.0 List of Services And General Notes on Usage
	9.0 Writing scripts using the dialog plugin
	9.1 The Configuration ini File
	9.2 How to Create a Dialog
	9.2.1 Don’t Bother: Use PowerPro Functionality
	9.2.2 Making the Dialog
	9.2.3 Modeless Versus Modal Dialogs
	9.2.4 Configuring Controls
	9.2.5 Getting the Dialog to Do Stuff
	9.2.6 Finishing The Dialog
	9.2.7 Use PowerPro Functionality
	9.2.8 Dealing with Index Base in Distributed Dialogs
	9.2.9 The Skeleton and Utility Dialogs
	9.2.10 Multiple Simultaneous Dialogs From The Same Script
	9.2.11 Enforcing a Single Instance of a Dialog from a Script

	9.3 How to Use the Dialog Plugin to Manipulate Non-Plugin Dialogs and Their Controls
	9.3.1 Don’t Bother: Use the win plugin
	9.3.2 Fonts
	9.3.3 Using Other Plugin Services

	10.0 The Services
	10.1 define
	10.2 define_control
	control types

	10.3 define_set
	10.4 make_ctrl_handle
	10.5 create
	10.6 run
	10.7 show
	<show_type> values for dialogs and controls
	<show_type> values for dialogs only

	10.8 enable	
	10.9 set_focus
	10.10 get_value
	10.11 set_value
	10.12 clear
	10.13 set_tooltip
	10.13.1 set_tooltip for controls
	10.13.2 set_tooltip for dialogs

	10.14 set_range
	10.15 set_colour
	10.16 rgb
	10.17 set_image

	10.18 set_response
	10.19 change_style
	10.20 set_icon
	10.21 set_font
	10.22 set_position
	10.23 get_last_clicked
	10.24 send_message
	10.25 browse_for_file
	10.26 choose_font
	10.27 destroy_window
	10.28 destroy
	10.29 destroy_all
	10.30 export NOT YET IMPLEMENTED
	10.31 version
	10.32 help
	10.33 returns_values, returns_status, returns_nothing
	10.34 error_dialog_on(), error_dialog_off()
	10.35 set_base, get_base
	10.36 config

	11.0 Common Service Arguments
	11.1 Specifying the Target of a Dialog service: Handles to Dialogs, Controls, and Windows
	11.2 The <dialog_definition_file> Parameter and the Format of Definition Files
	11.2.1 The one-line-per control <dialog_definition_file>
	11.2.2 The ini file <dialog_definition_file>
	11.2.3 Converting and creating <dialog_definition_file>s

	11.3 Control Ids
	11.4 Styles: the <styles> parameter
	Styles Applying to all Controls

	11.5 Script Calls and Their Arguments:
the <script_to_call> and <command_arg> parameters
	11.5.1 The Structure of Event-Handling Scripts
	11.5.2 Which Script?
	11.5.3 <action_on_close>

	11.6 Specifying Which Messages Are Responded To:
the <events> parameter
	11.7 Colours: the <foreground>, <background> parameters
	COLORREF

	11.8 Icons: the <icon_path>, <path_to_image>, and <icon_number> parameter
	11.9 Fonts: the and <font_spec> parameters
	11.10 Control and Dialog Positions and Sizes
	11.10.1 <dimensions>
	11.10.2 Dialog Units
	11.10.3 Resizing Dialogs
	11.10.4 Control Dimensions

	11.11 <right_click_command>: Context Menus

	12.0 dialog_ Variables
	13.0 The Dialog Editor
	13.1 Configuration
	13.2 Loading and saving dialogs
	13.3 Editing dialog properties
	13.4 Editing controls
	13.5 Running dialogs
	13.6 Editing dialog definition files as text

	14.0 General Restrictions
	15.0 Possible Enhancements
	16.0 Change History
	Appendix I: The Windows Dialog API
	Appendix II: Details on Specific Controls
	II.1: Button Controls
	II.1.1 Styles
	General Button Styles (including Check Box Controls, Radio Buttons, Groups)
	Styles Applying to Buttons with Images

	II.1.2 Messages and Services
	Named Messages for (General) Buttons (including Check Box Controls, Radio Buttons)

	II.1.3 Colours

	II.2: Groups
	II.2.1 Styles

	II.3: Radio Buttons, Check Box Controls, Three-States
	II.3.1 Styles
	II.3.2 Messages and Services
	Named Messages for Check Box Controls, Radio Buttons

	II.3.3 Colours

	II.4: Static Controls
	II.4.1 Styles
	Styles for Statics

	II.4.2 Messages and Services
	II.4.3 Colours

	II.5: Edit Controls
	II.5.1 Styles
	Styles for Edit Controls

	II.5.2 Messages and Services
	II.5.3 Colours

	II.6: List Controls
	II.6.1 Styles
	Styles for List Controls

	II.6.2 Messages and Services
	Named Messages for List Controls

	II.6.3 Colours
	II.6.4 Removing Strings

	II.7: Combo Box Controls
	II.7.1 Styles
	Styles for Combo Box Controls

	II.7.2 Messages and Services
	Named Messages for Combo Box Controls

	II.7.3 Colours
	II.7.4 Removing Strings

	II.8: The Scrollbar Control
	II.8.1 Styles
	Styles for Scrollbars

	II.8.2 Messages and Services
	II.8.3 Colours
	II.9.1 Styles
	II.9.2 Messages and Services
	Named Messages for Services

	II.9.3 Colours

	II.10: The Slider (Tracker Bar) Control
	II.10.1 Styles
	Styles for Sliders

	II.10.2 Messages and Services
	II.10.3 Colours

	II.11: The Progress Control
	II.11.1 Styles
	Styles for Progress Bars

	II.11.2 Messages and Services
	Named Messages for Progress Bars

	II.11.3 Colours

	II.12: The Date-Time Control
	II.12.1 Styles
	Styles for Date-Time controls

	II.12.2 Messages and Services
	Named Messages for Date-Time Picker

	II.12.3 Colours

	II.13: The Month-Calendar Control
	II.13.1 Styles
	Styles for Month-Calendar Controls

	

	II.13.2 Messages and Services
	Named Messages for Month-Calendar Controls

	II.13.3 Colours

	II.14: The ActiveX Container Control
	II.15: The Statusbar Control
	II.15.1 Styles
	Styles for Statusbars

	

	II.15.2 Messages and Services
	II.15.3 Colours

	II.16: The Tab Control
	II.16.1 Styles
	Styles for Tab Controls

	II.16.2 Messages and Services
	Named Messages for Tab Controls

	II.16.3 Removing Tabs
	II.16.4 Colours

	II.17: The Treeview Control
	II.17.1 Styles
	Styles for TreeView Controls

	II.17.2 Messages
	Named Messages for TreeView Controls

	II.17.3 Colours
	II.17.4 Removing Nodes

	II.18: The Rich Edit Control
	II.18.1 Styles
	Styles for Rich Edit Controls

	II.18.2 Messages
	II.18.3 Notifications
	II.18.3 Colours
	II.18.4 Which Type of Edit Control?

	II.19: The Scintilla Control
	II.19.1 Styles
	
II.19.2 Messages
	II.19.3 Colours

	II.20: The Listview Control
	II.20.1 Styles
	Styles for ListView Controls

	II.20.2 Messages
	II.20.3 Colours
	II.20.4 Removing Columns or Items

	II.21: The Animation Control
	II.21.1 Styles
	Styles for Animation Controls

	II.21.2 Messages
	Named Messages for Animation Controls

