
unicode plugin for PowerPro: version .69 17 April 2009

A PLUGIN TO ALLOW USE OF UNICODE TEXT IN POWERPRO
Alan Campbell

No warranty of any kind, express or implied, is included with this software; use at
your own risk Responsibility for damages (if any) to anyone resulting from the use of
this software rests entirely with the user.

1.0 Overview

This PowerPro plugin allows you to manipulate unicode strings. You can get them in and
out of the clipboard and in and out of files. You can use all the functions available in the file
plugin, but the filenames can be unicode. There are equivalents of most of the string
functions available in PowerPro for manipulating them.
What you can't do (and will never be able to do, unless Bruce rebuilds PowerPro for unicode)
is use unicode strings in PowerPro bars, menus or dialogs.

1.1 This Document

There are three versions of this document, with the same content. There's an RTF file,
which looks nice in Word but is something like four meg in size; and there's a compiled help
(CHM) document, which is much smaller if somewhat uglier; and there's a pdf, with
bookmarks for each section heading.
In my experiments I've found the RTF file doesn't display correctly in anything but Word (not
Keynote, even Wordpad: you've think Microsoft could at least get their rtf engines
consistent). So if you don’t have Word, better use the chm file.
All documents have extensive hyperlinks. The table of contents at the front of each
document is a set of them.
The chm file has no index.

1.2 What’s New In This Version

• fixed bug in inputDialog service

• fixed bug in keys service (which crashed if raw parameter specified)

• added pdf version of documentation

• added version resource

• added a destroy alias for the release service

• added unicodePluginFunctions.txt to be used as a file menu, perhaps merged with
pprofunctions.txt.

2.0 Requirements

Requires Powerpro version 3.4 or later. Test scripts require at least 3.8.15. Edit them to get
rid of ?c…c syntax to use with previous versions. They work in standard configuration.

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 2 of 38

Those of you who are tetchy about MFC will be happy to know that, unlike the registry
plugins, unicode.dll doesn’t require MFC support (e.g. MFC42.DLL).
The support utility encodeUnicode.exe (see Section 8.3) requires riched20.dll and may not
work on win9x machines.
The to_binary service requires the binary plugin. You should have at least version 0.46. Get
it here:
http://groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Funny_Strings/
There are currently two variants of the binary plugin: one whose services need the name of a
variable as an argument, so they can directly access the variable buffer's contents, and one
that works with blocks of binary data via handles. The unicode plugin can use either. The
latter is preferred.
Tested on W2000 sp4. On W2K it would appear that if you haven’t specifically installed
regional support for whatever unicode variant you want to use, you may not be able to
rename files or manipulate shortcuts using the relevant unicode services. But if you’re
always using unicode, you probably have whatever regional support you need already
installed.
Unlike W2K, XP doesn't seem to require specific regional support to be installed for unicode
file names to work no matter what characters are used.
I'm unclear how much unicode support, if any, is available on win 9x machines. I found a
note on a Microsoft site that said “…unicode support on Windows Me/98/95 requires
Microsoft Layer for Unicode.” If you're on such an OS and need unicode, you probably know
more than I do.

2.1 Reporting Bugs, Requesting Enhancements

If you hit any problems with this plugin (or any of my plugins, for that matter), it'd be helpful if
you reported them via the PowerPro forum (http://groups.yahoo.com/group/power-pro/) in a
message with a clear subject line (maybe: "UNICODE PLUGIN: apparent error in:…."). I
don’t read everything in the forum, but I will see anything flagged with an obvious header.
Please include a copy of the script causing problems, and state which version of PowerPro
and of the unicode plugin you're using.

http://groups.yahoo.com/group/power-pro/
http://groups.yahoo.com/group/power-pro/files/Plug-ins_and_add-ons/0_Funny_Strings/

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 3 of 38

3.0 File list

plugins\unicode.dll
docs\unicodePluginReadme.rtf
docs\unicodePluginReadme.chm
docs\unicodePluginFunctions.txt

scripts\unicodePluginGeneralDemo.powerpro
scripts\unicodePluginStringDemo.powerpro
scripts\unicodePluginStringDemoDotSyntax.powerpro
scripts\unicodePluginClipboardDemo.powerpro
scripts\unicodePluginFileDemo.powerpro

scripts\unicodePluginKeysDemo.powerpro
scripts\keystrokes.txt

scripts\testAllFiles.powerpro
scripts\testWatchFolder.powerpro
scripts\testUnicode.lnk
scripts\testNotUnicode.txt
scripts\testUnicode.txt

scripts\encodeUnicode.powerpro

4.0 Installation

Copy unicode.dll from unicodePluginX.XX.zip archive into your PowerPro directory, or into its
plugins subfolder.
All other files can go wherever you want, including .powerpro scripts.
unicodePluginFunctions.txt can be appended to pprofunctions.txt supplied in the PowerPro
distro (or included in it, using

include <path to>\comPluginFunctions.txt)
It can then be accessed either as part of pprofunctions.txt or on its own as a file menu (e.g.
using a hot key associated with

*keys {filemenu <path to>\pproFunctions.txt})

5.0 UnInstall

Remove all files listed in the above section (“3.0 File list”) from wherever they went..

6.0 Acknowledgements

Thanks to Bruce for source code for his plugins and built-in Powerpro functions.
Ta to Andreas Mokros for help debugging UTF-8-oriented services, and to Sean () for
suggestions and help testing the keys service.
Stole code from:
Rich Edit Control DOES NOT support UNICODE string? at:

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 4 of 38

http://www.msusenet.com/history/topic.php/1870572589-1.html
BASE 64 Decoding and Encoding Class 2003 at

http://www.codeguru.com/Cpp/Cpp/algorithms/article.php/c5099/

http://www.codeguru.com/Cpp/Cpp/algorithms/article.php/c5099/
http://www.msusenet.com/history/topic.php/1870572589-1.html

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 5 of 38

7.0 Testing

To run any of the unicodePlugin*.powerpro scripts:
Either:

• Put them in your <PowerPro configuration>\scripts directory

• Run scripts with a command (menu item?) in PowerPro like

*Script RunFile unicodePluginTestScriptToSelf or
.unicodePluginTestScript

Or:

• Put the scripts anywhere and double click on it (as long as PowerPro is already
running). This didn’t work on my machine until I manually set up an association
with .powerpro, but if your Powerpro installation went correctly it should work for
you.

The scripts will output both to the Powerpro debug window and numerous messagebox
dialogs (there being no other way to present unicode strings from within Powerpro).
The debug window is easier to understand if you check "Put debug window items at end of
list box" in PowerPro's configuration, Advanced Setup.
None of the test scripts use the evaluate-expression operator "&" so are not dependent on
your choice for it. It uses the ?c…c syntax to avoid problems with your declared escape
character, so you should have no problems whether that's ' or \.
There are further comments on how the scripts work embedded in the scripts itself.
Note that

• testAllFiles.powerpro and testWatchFolder.powerpro are not meant to be run on
their own: they're used by unicodePluginFileDemo.powerpro.

• encodeUnicode.powerpro is primarily a helper script, but can be used as a test as
well.

• unicodePluginStringDemoDotSyntax.powerpro illustrates the handle.service syntax
introduced with PowerPro 4.4.07.

• unicodePluginKeysDemo.powerpro exercises the keys service. keystrokes.txt must
be in the same folder as the script. You must be prepared to switch to an application that
can accept unicode characters as input, e.g. a unicode-aware text editor. Word seems to
know what to do with unicode on my system.

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 6 of 38

8.0 Usage

Ensure unicode.dll is in your PowerPro installation directory, or in the plugins subfolder
thereof.

8.1 Handles and Unicode String Storage

Since Powerpro can’t itself store and remember unicode strings, unicode plugin services that
produce unicode strings return not the string itself, but a handle to one. The string itself is
stored internally, within the plugin A handle is just a simple string beginning "u\x05" followed
by a number from 3000 to 3255.
If you have PowerPro 4.4.07 or later, instead of the standard syntax:

local uString1 = unicode.new("aaa")
local uString2 = unicode.new("bbb")
local uString3 = unicode.new("ccc")
local uString = unicode.join(uString1, uString2, uString3)

you can use the syntax
local uString = uString1.join(uString2, uString3)

This only works if the first argument of the service (in old-style syntax) is a handle to a
unicode string.
This would fail:

local sString3 = "ccc"
local uString = sString3.join(uString2, uString3)

Furthermore, if you have PowerPro 4.4.11 or later, any handles created as intermediates in
an expression (and not, therefore assigned to a variable or returned via quit) will be
automatically released after the expression’s evaluated, so this is fine:

uString = unicode.decode("EAQRBBIEEwQUBAAA")
unicode.messagebox("ok", uString.fill("zz"), "Cyrillic 3 chars + zz")

uString.fill("zz") in the second line allocates a handle to a Unicode string -- but that handle is
automatically destroyed once the messagebox clears.
The plugin can store (and provide handles for) up to 256 unicode strings.
Because there's a limit, you may wish to use the release or releaseall services to let go
unicode strings you no longer need.
Don't lose handles to unicode strings by e.g. overwriting it without first releasing the
underlying string it points to. This is a bad idea.

local rcStruct = unicode.new("test")
rcStruct = "" ;; oops, lost the handle

So is this: unless you have PowerPro version 4.04.11 or later:
local sResult = unicode.join("clipboard is:" , unicode.clip_get)

If you have the later version, the handle from unicode.clip_get will be used, but immediately
released once the expression it’s part of is evaluated.

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 7 of 38

If you have earlier versions, the handle returned by unicode.clip_get, though it will work in
context, will be lost after the expression is evaluated, so there'll be no way to release the
unicode string.
If you have PowerPro version 4.4.05 or later, you don’t have to use release on handles
stored in local variables; they'll be released automatically when the local goes out of scope at
the end of the routine: unless you override that automatic release by using the localcopy
service.
For instance, in this context (assuming arg(1) carries a handle to a unicode string):

@aRoutine
local v
v=arg(1)

you probably don’t want the unicode string destroyed when you routine exits, because,
usually, the caller may wish to do more stuff with it. To prevent the automatic destruction of
handles held in local variables, do this instead:

local v
v=dll.localcopy(arg(1))

Scripting tip: if you're going to use this facility, don’t unload the unicode plugin at the end of
your script. PowerPro will need the plugin dll loaded in memory to do it's thing with local
handles.
If you do release a handle held in a local variable, best invalidate it by e.g. doing

myLocalVar = unicode.release(myLocalVar)
Unloading the unicode plugin will cause all stored unicode strings to be released.
unicode.file_open returns handles to files, which are incompatible with those returned by the
standard PowerPro file plugin. You can use the filehandle.service syntax as you can with
standard file plugin handles.

8.2 Making Unicode Strings

You can produce a unicode string (and get its handle) by

• explicitly creating it using new

• combining unicode and/or ordinary strings using join or append.

• copying an existing unicode string using copy

• applying a transformation to a unicode or ordinary string

• retrieving text from clipboard or file

• input it as an encoded literal:

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 8 of 38

8.3 How to Input Literal Unicode

You can't just type literal unicode into a Powerpro script, since Powerpro only understands
ASCII. So, there's a support script (which uses the inputDialog and encode services):
encodeUnicode.powerpro. Crank that up, type in your unicode string, hit the right button,
and an encoded version of your unicode (base64, since you ask), is put on the clipboard.
Paste that text in between quotes as an argument to unicode.decode, which will give you
back a handle to a unicode string.

8.4 Using Unicode Strings

Okay, so the only thing Powerpro itself knows about unicode strings is their handles. It
doesn't know how to use those handles (only the plugin does), so you can’t meaningfully
use a handle to a unicode string as an argument to a Powerpro function. In particular, that
means you can't use unicode strings to set text in Powerpro bars or menus, or as arguments
to other plugins.
The only way you can display a unicode string is to use unicode.messagebox. The debug
window can’t handle them. If you send a variable containing a handle to a unicode string to
the debug window, all you'll see is something like "UNS__3213".

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 9 of 38

8.5 The Configuration Ini File

On the first call to any unicode service, the plugin checks for a file called unicode.ini in the
folder pointed to by the Powerpro variable pprofolder (usually the folder in which the currently
active pcf file is found). It then looks for a [unicodeConfig] section in that ini file. If that's not
found, it looks for the same section in the file plugins.ini in the same folder. If either are
found, it looks for the following values in the section:

* Only the first non-whitespace character of the key's value is checked, no matter how many
there are. So values "yes", "no", "true" or "false" will work. As usual the ini value is case-
insensitive, so "Y" and "FALSE" are also valid.

† Only the first non-whitespace character of the key's value is checked, so "status", "data"
and "none" will work.

If no unicode.ini or plugin.ini files are found with a [unicodeConfig] section, the unicode plugin
will initially just use the compiled-in, default values (specified in the third column above) to
configure itself.
If an ini file with a [unicodeConfig] section is processed, and there's a possible value that
could be in ini but isn't, the unicode plugin reverts to the default value for that value.
Once an ini file with a [unicodeConfig] section is processed, its values stay in force until the
unicode plugin unloaded or the config service is run.
If the first service called is one which itself changes the configuration (e.g. error_dialog_on),
the configuration ini file will be found and evaluated before the service is applied.
If you want to change your initial configuration, you can use the ini plugin to do it. E.g.:

ini.set(pprofolder ++ "plugins.ini", "unicodeConfig", "raiseErrors", "1")
After making your changes, either:

• unload the unicode plugin. The next time you use one of its services, the new
configuration will kick in. Or

• run dll.config(<path to configuration ini file>).
If you do an *Exec ChangeConfiguration; and if the new and old pcf files are in different
folders; and if there's a dll.ini or plugins.ini file in the new pprofolder, the configuration it
specifies won’t take effect until you take one of the steps above..

key possible
values

default
value

can modify
using service meaning

indexBase 0, 1 0 none whether indexing starts at 0 or 1 get_bytes,
set_bytes,

raiseErrors
0 1
y n

 t f *
1 error_dialog_on

error_dialog_off
determines if errors in syntax format,
service arguments etc cause powerpro to
raise the script error dialog.

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 10 of 38

8.6 The Services

There are a lotta services in this plugin::

• services with no direct equivalent in Powerpro : to do with creation, destruction and
conversion of unicode strings.

• clones of built-in Powerpro string functions : Services in this category usually have the
same name as the Powerpro functions. The few exceptions are those where the built-
in function name conflicts with a standard windows API function, which are altered to
avoid the conflict: e.g. case, strcoll, stricol.

To understand how a service works, go to

winhlp32.exe -I stringfunc <path to powerpro.hlp>

and look up the equivalent powerpro function, and read that in conjunction with the
remarks against the service in question in the table below.

• clones of built-in Powerpro UI functions : just one, messagebox. See

winhlp32.exe -I messagebox <path to powerpro.hlp>

• clones of clip plugin services : take name "clip_" plus the name of the clip plugin
service.
To understand how a service works, look up the equivalent clip service in clip.txt in the
plugins folder and, and read that in conjunction with the remarks against the service in
question in the table below.

clones of file plugin services: take name "file_" plus the name of the file plugin service.

To understand how a service works, look up the equivalent clip service in file.txt in the
plugins folder, and read that in conjunction with the remarks against the service in
question in the table below.
clones on win plugin services: sendcopydata and keys

file_open and file_writeall have a final, optional parameter that will cause the unicode
byte-order marks (\xFF\xFE) to be prefixed to the file. If the parameter is missing,
BOM is written.

The services are listed in the following tables. Arguments are listed for each service. The
types for those arguments are described in the next section. There’s a column in each table
to indicate whether arguments are optional. If they are, the default value for that argument
used if the argument is left out, is indicated in parenthesis.
In the tables, the service column gives the name of the service and, in italics, any aliases for
the same service. Aliases only work if you're using <handle>.alias syntax.

unicode plugin v ..69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 11 of 38

8.6.1 Service Argument Types
Each argument of each service has a type. The allowed argument types are:

type which is
int an integer, either as a literal or held in a variable

bool an integer, but expected to be 1 or 0.

str

a normal powerpro string, either as a literal or held in a variable. The only
arguments to unicode services that must be simple ASCII strings are things
like the keyword argument of change_case, the mode argument of
file_open, the info argument of file_resolve, or the layout argument of
messagebox

us

a representation of a unicode (wide) string. This can be either:

a handle to a
wide string:

must have been returned by a previous call to a
unicode service and not yet released; recognised
because meets criteria for a handle (which begins
"UNS__" followed by a number from 3000 to 3255).
Almost invariable held in a variable.

a normal
Powerpro string:

If above criterion not met, assumed to be a plain
ASCII string 1

h_us a handle to a wide string, which must have been returned by a previous call
to a unicode service and not yet released.

enc
an encoded string, generated by the encode serice or the support utility
encodeUnicode.exe. See Section 8.3. It's a base64-encoded version of a
unicode string. Only used as an argument to unicode.decode.

fh a file handle, returned by unicode.file_open.. Handles returned by the file
plugin's file.open will not work.

1 These will be converted to temporary unicode strings, which will be used as the real argument to the
service, then, if not an argument to new, deleted.

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 12 of 38

Services without direct equivalents in Powerpro

service
arguments

returns
Powerpr

o
equivale

nt
remarks

type req
?

new string str Y h_us none makes a unicode string from a plain string

empty size int Y h_us none returns a handle to a WCHAR buffer able to accept up to size
characters

decode encoded str
(encoded) Y h_us none decodes encoded from base64. See Section 8.3

encode target h_us Y str none encodes target to base64. See Section 8.3

join
string1
string2
…

us
us
...

Y
N
N

h_us ++ 1-8 arguments
joins unicode strings. details.

append
string1
string2
…

h_us
us
...

Y
N
N

h_us none
1-8 arguments
appends string(s) onto another. details.
modifies what the string1 h_us points to and returns that handle

to_ascii
ascii

string
codepage

h_us
int

Y
N str none convert unicode string to ascii. Uses default ANSI code page

unless you provide codepage

to_binary see details see details Y details none convert a unicode string to a byteblock, usable by the binary plugin.
details

from_utf8 string str Y h_us none create a unicode string from UTF-8 encoded string. details.
from_mbcs string mbcs Y h_us none create a unicode string from MBCS encoded string
to_utf8 string us Y str none create a UTF-8 string from a stored unicode string
release
destroy target h_us Y - none release a handle

release_all none release all handles
localcopy target h_us Y h_us none makes a copy of a handle (typically passed into a routine as arg(n)

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 13 of 38

Services without direct equivalents in Powerpro
service arguments returns Powerpr

o
equivale

nt

remarks

type req
?

and copied to a local); explanation here.

version - - - int none the plugin version number is returned as four digits, an assumed
decimal point before the last two.

set_base base int (0 or 1) Y - none sets base for get_bytes, set_bytes and some other services.
Overrides config ini key indexBase

get_base - 0 or 1 none returns current base for indices

compare string1
string2

us
us

Y
Y int < > == case insensitive compare

join, append: if one arg, just makes a new unicode string, unless it's a handle to a unicode string, in which case handle is simply
copied
create_from_utf8: UTF8 if for the most part representable as an ANSI string. To the extent that's true, you can use this service.
But if for instance your UTF-8 includes the NUL character (\x00), you're stuffed, because you can’t enter that as part of a PowerPro
string.
to_binary: arguments depend on which variant of the binary plugin you have. If it’s the one that directly manipulates variables,
provide the name of the variable as the first argument, a handle to the unicode string as the second. If it’s the one that returns
handles to binary strings, provide the handle to the unicode string as its one argument; to_binary will return a handle a binary
string.
If you want to write a script in which to_binary will work for either variant of the binary plugin (only necessary if you want to write
scripts for general distribution, not just for your own use), you need to test the last character returned by binary.version; that will
be “h” for the variant that returns handles, and "v" for the variant that works directly with variable contents.

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 14 of 38

Equivalents of Powerpro functions that do UI things

service
arguments

returns Powerpro
equivalent remarks

type req
?

messagebox
layout
message
title

str
us
us

Y
Y
N

int messagebox layout can only be a plain (non-
unicode) string.

inputDialog
format
title
useBOM

str
us
int (1/0)

Y
Y
N

int (1/0) inputDialog see below

inputDialog is complicated and hedged around by caveats.

• format: A plain (non-unicode) string made up of variable=title pairs. See PowerPro help for the details.
the variables may contain plain ANSI strings, or handles to unicode strings. But:
o if a variable=title pair is terminated by "??" and therefore defines a checkbox, the variable must not be a handle to a

unicode string (since the only thing relevant about the variable's value is whether it's non-zero or not).
o if a variable=title pair is terminated by "??" followed by "value|value2|value3…" and therefore defines a combobox, the

values may contain plain ANSI strings, or handles to a unicode strings; but if the latter, they may not display correctly.∗

• title: may contain a plain ANSI string, or a handle to a unicode string

• useBOM: if you're using a combobox, and your language needs the unicode byte order mark (BOM) in front of each string
added, set this to 1.

 http://www.harper.no/valery/PermaLink,guid,99b85fa3-104f-4a41-a28f-4786c68e77e4.aspx said: "One interesting (undocumented) thing that I found during test of Russian version is
that [the] ComboBox [control]requires UNICODE BOM when adding UNICODE strings to them. Chinese, Japanese and Persian work without BOM, but Cyrillic doesn’t – just show
bricks instead of letters – weird…..if you don’t have installed files for complex scripts, right-to-left languages or East Asian languages, then BOM is treated as invalid UNICODE
character by ComboBox and you’ll see something like “■” in front of every line"

http://www.harper.no/valery/PermaLink,guid,99b85fa3-104f-4a41-a28f-4786c68e77e4.aspx

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 15 of 38

Equivalents of Powerpro functions that manipulate strings
service arguments returns Powerpro

equivalent
remarks

type req
?

length target h_us Y int length returns length of target

find (0-based)
index (1-based)

searche
d
target

us
us

Y
Y int index returns index of of target within

searched.

revfind (0-based)
revindex (1-based)

searche
d
target

us
us

Y
Y int revindex returns index of last occurrence of

target within searched

repeat target
count

us
int

Y
Y h_us repeat returns unicode string formed by

repeating first argument count times

remove target
count

us
int

Y
Y h_us remove removes count characters from target

fill target
fill

us
us

Y
Y h_us fill combines target and fill

see Powerpro help re fill function

replacechars
target
patt/fro
mto

us
us
us

Y
Y
N

h_us replacecha
rs

see Powerpro help re replacechars
function

translate
target
from
to

us
us
us

Y
Y
Y

h_us translate see Powerpro help re translate
function

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 16 of 38

Equivalents of Powerpro functions that manipulate strings (continued)

service
arguments

returns Powerpro
equivalent remarkstyp

e
req
?

minimum
str_min
min

string1
string2

us
us

Y
Y h_us min

returns handle to minimum of two values; if the
argument which is minimum is a literal, causes a new
unicode string to be stored and handle to be generated

maximum
str_max
max

string1
string2

us
us

Y
Y h_us max maximum of two values; see min

env variable us Y h_us env returns value of environment variable named by
variable.

change_case
case

target
keyword

us
str

Y
Y h_us case see Powerpro help re case function

slice (0-based)
str_select,
select (1-based)

target
pos
endpos

us
int
int

Y
Y
N

h_us select
selects pos characters from target; or select pos through
endpos characters.
see Powerpro help re select function.

str_coll
strcoll
coll

string1
string2

us
us

Y
Y

int:
 1: ws1 <ws2
 0: ws1 =ws2
-1: ws1
<ws2

strcoll compares two unicode strings using local collating
sequence

str_icoll
stricoll
icoll

string1
string2

us
us

Y
Y

int:
 1: ws1 <ws2
 0: ws1 =ws2
-1: ws1
<ws2

stricoll compares 2 unicode strings using local collating
sequence, ignoring case of letters;

line string us Y h_us or int line returns the nth line, unless n == 0, in which case returns

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 17 of 38

Equivalents of Powerpro functions that manipulate strings (continued)
service arguments returns Powerpro

equivalent
remarks

typ
e

req
?

n int Y line count.

word
string
n
delimiter
s

us
int
us

Y
Y
N

h_us or int word
returns the nth word, unless n == 0, in which case
returns word count. delimiters default to space and tab
if omitted

get_chars
get_char

string
pos
posEnd
type

h_u
s
int
int
str

Y
Y
N
N

h_us, str or
int

assign
from
hu[pos, ep]

gets posth to posEndth characters in a unicode string;
you can also use target[pos] syntax details

set_chars
set_char

string
pos
posEnd
 or type
value

h_u
s
int
str
us
str

Y
Y
Y
N
N

h_us
supplied as
first arg

assign to
hu[pos, ep]

modifies an existing unicode string by setting posth to
posEndth characters to value. You can also use
string[pos] = value syntax. Always returns the string
handle. details

default_get_set_type type str Y - - determines behaviour of set_chars, get_chars with no
type arg details

squeeze target
runsOf

h_u
s
h_u
s

Y
N h_us squeeze see Powerpro help re squeeze function

reverse target h_u
s Y h_us reverse see Powerpro help re reverse function

rotate target
n

h_u
s

Y
Y

h_us rotate see Powerpro help re rotate function

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 18 of 38

Equivalents of Powerpro functions that manipulate strings (continued)
service arguments returns Powerpro

equivalent
remarks

typ
e

req
?

pre
min

int
us
int

N
N

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 19 of 38

get_chars: pos and endPos are based at 1 or 0 (depending on value of configuration ini key indexBase or last call to set_base;
assumed value if absent depends on same); must be no greater than the length of the unicode string (determined by its length);
if negative chooses a position at end of string (-1 is the last unicode character). If endPos is absent, one unicode character is
retrieved. If endPos is present, unicode characters from pos to endPos are retrieved. type can begin with "u" to return a
handle to a unicode string (the default if type is absent); "c" (character), in which case unicode characters are converted to
ANSII; or "8" (number) in which case you get back the UTF-8 equivalent of the selected unicode characters.

You may wish to call default_get_set_type which will set the behaviour of get_chars (and set_chars) without a type argument
from then on, until default_get_set_type is called again or the plugin is unloaded.

set_chars: pos and endPos are as for get_chars. The selected characters are replaced by value. type can only be present if
endPos is absent (i.e. if setting a single character); if it begins with "u" (unicode), or is absent, value can be either a handle to a
unicode string or a plain string; or "n" (number) in which the numeric value (0 to 65280 aka 0xFF) is used to set specified
unicode character (which only works if you’ve selected exactly one byte with pos and possibly endPos). default_get_set_type
also affects behaviour of set_chars if it’s invoked without a type argument.

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 20 of 38

Equivalents of clip plugin services

service
arguments

returns
equivale

nt
service

remarks
type req?

clip_get (none) h_us get returns the text on the clipboard

clip_set string
cap

us
bool

Y
N (0) - set

sets the clipboard;
if cap is present and set to 1, then this clip will be captured by
PowerPro

clip_append (none) us Y - append appends text to the clipboard

clip_setpaste (none) us Y - setpaste sets text to the clipboard, then sends Ctrl-V to paste to
foreground window

clip_copy (none) copy see note
clip_cut (none) cut see note
clip_paste (none) paste see note
clip_clear (none) - clear see note
clip_length (none) int length returns length of clipboard treated as unicode string

clip_copy, clip_cut, clip_paste, clip_clear: all these are exactly the same as equivalent clip plugin service, so
having them here is redundant. However, they're only a few lines of code apiece,

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 21 of 38

Equivalents of clip plugin services (continued)

service
arguments retur

ns
equivalent

service remarks
type req?

clip_fromFile path us Y - fromFile copies file at path to clipboard details.

clip_fromFileAppend path us Y - fromFileAppend appends file at path to clipboard
does not support rich text format.

clip_toFile
path
noErr
prefix

us
bool
bool

Y
N (0)
N (1)

- toFile

puts clipboard into file at path
no error message if noErr is 1.
if prefix is 1 or absent, the unicode BOM \xFF\xFE
will be prefixed to file

clip_toFileAppend path
noErr

us
int

Y
N (0) - toFileAppend

appends clipboard to file at path
no error message if noErr is 1
does not support rich text format.

clip_fromFile: if file extension is .clprtf, Bruce's code in clip.fromFile does weird stuff..
My code does exactly the same weird stuff, and makes no attempt to interpret the file contents as unicode.
If prefix not '0' or absent, the unicode byte-order mark (\xFF\xFE) is prefixed before clipboard contents

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 22 of 38

Equivalents of file plugin services

service
arguments

returns equivalent
service remarks

type req?

file_open

fname
mode
format
bom

us
str
str
bool

Y
Y

N (u)
N (1)

fh open opens a file from a unicode_string name and returns a file
handle used subsequently to access the file. See note.

set_utf8_default format “a” or
“u” Y nothing none whether the formats utf8, utf-8 and 8 are the same as

utf8a or utf8u; see note.

file_readstring
readstring file fh Y h_us readstring

reads and returns next line (format determined by format
specified in file_open which produced file handle) from
file;
the trailing \r and \n are removed; strips off leading
unicode byte-order marks if present. See note

file_readline
readline file fh Y h_us readline

reads and returns next line (format determined by format
specified in file_open which produced file handle) from file
including any trailing \r or \n ; strips off leading unicode
byte-order marks if present. See note

file_writeline
writeline

file
string

fh
us/str

Y
Y 0/1 writeline

writes a string (format determined by format specified in
file_open which produced file handle) and following \r
and \n

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 23 of 38

Equivalents of file plugin services (continued)

service
arguments

returns equivalent
service remarks

type req?

file_writestring
writestring

file
string

fh
us/str

Y
Y 0/1 writestring

writes string (format determined by format specified in
file_open which produced file handle) to file, but does
not output an \r or \n

file_readall path
format

us
str

Y
N (u)

h_us if u/
8
str if a

readall
reads entire file at path name into a single string; strips
off leading unicode byte-order marks if present. See
note

file_writeall

path
string
append
format
bom

us
us/str
str
str
bool

Y
Y
N

N (u)
N (1)

- writeall Writes a string to a file. See note.

file_setmaxline max int Y - setmaxline
set maximum line buffer for subsequent calls to
file_readline, file_readline; if n <264, 264 is used. If
n>64k, 64k is used.

file_close
close file fh Y - close closes the file and frees the file handle

file_closeall (none) - closeall closes all open file handles

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 24 of 38

Equivalents of file plugin services (continued)

service
arguments

returns equivalent
service remarks

type req?

file_eof
eof file fh Y int eof returns 0 if last read did not encounter eof; non-zero

otherwise
file_restart
restart file fh Y - restart restarts reading or writing of a file from the beginning

file_delete path us Y - delete deletes a file; the path can contain wildcards.

file_deletenorecycle path us Y - deletenorecyc
le

deletes without sending file to recycle bin
the path can contain wildcards.

file_copy
path1
path2
noError

us
us
bool

Y
Y

N (0)

1 if
succes
s, 0 if
not

copy copies a file to a destination file or folder. See note

file_move
path1
path2
noError

us
us
bool

Y
Y

N (0)

1 if
succes
s, 0 if
not

move moves (renames) a file from path1 to a destination file or
folder specified by path2. See note.

file_isfolder path us Y int isfolder checks to see if path is a valid path to a folder
the path may not contain wildcards

file_attrib path us Y str attrib returns a string of single letters indicating the path's
attributes.

file_type path us Y h_us type returns the type (extension) of path excluding the leading
period

file_name path us Y h_us name returns the file name of path, excluding the folder and
type

file_nametype path us Y h_us nametype returns the name and type from path

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 25 of 38

Equivalents of file plugin services (continued)

service
arguments

returns equivalent
service remarks

type req?

file_folder path us Y h_us folder returns the folder from path without the final \
file_size path us Y str size returns file size in bytes of file at path

file_size64 path us Y str size64 returns size as 64 bit integer; use int64 plugin to work
with

file_ksize path us Y str ksize returns file size in kilobytes (size/1024)

file_lastmodified path us Y str lastmodified returns the last modified date and time of the file as a
string of 12 digits : yyyymmddhhmmss.

file_getshortpath path us Y getshortpath returns short path to file at path

file_setdate

path
type
date
time

us
str
int
int

Y
N
N
N

- setdate
sets date of a file at path.
see note re type parameter
for more details see file.txt doc re file.setdate

file_getdate path
type

us
str

Y
N str getdate

gets date of a file at path.
see note re type parameter
for more details see file.txt doc re file.getdate

file_watchfolder

path
cmd
maxwait
keywords

h_u
s
str
int
str

Y
N
N
N

watchfolder see note.
for more details see file.txt doc re file.watchfolder

file_runwait

maxwait
exePath
params
workDir
howstart

int
us
us
us
str

Y
Y
N
N
N

int runwait for details see file.txt doc re file.runwait

file_runaswait
maxwait
exePath
params

int
us
us

Y
Y
N

int runaswait for details see file.txt doc re file.runaswait

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 26 of 38

Equivalents of file plugin services (continued)
service arguments returns equivalent

service
remarks

type req?
workDir
howstart

us
str

N
N

file_runcallback

maxwait
cmd
params
workDir
howstart

int
str
us
us
us
str

Y
Y
Y
N
N
N

- runcallback
suggest you don't execute unicode.unload in
the cmd script. Powerpro may not like it.
for details see file.txt doc re file.runcallback

file_allfiles

path
cmd
bSubfolder
s
bPump
bUseHidde
n

us
str
bool
int
bool

Y
N

N (0)
N (0)
N (0)

int allfiles see note.
for more details see file.txt doc re file.allfiles

file_listfiles

path
bSubfolder
s
bPump

us
bool
int

Y
N (0)
N (0)

str listfiles see note
for details see file.txt doc re file.listfiles

file_version path us Y str version returns file version info as four blank separated numbers

file_runas

username
password
app
args
start_folder

us
us
us
us
us

Y
Y
Y
N
N

1/0 runas

runs app as username logging on with password.
username may be a local user, or may be of form
user@domain. app runs with username's registry profile
and environment loaded.
returns 1 if succeeds, 0 if fails

file_createshortcut
not yet working

target
fpathlnk
desc

us
us
us

Y
Y
N

1/0 createshortcu
t

creates a .lnk file shortcut to another file
for details see file.txt doc re file.createshortcut service

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 27 of 38

Equivalents of file plugin services (continued)
service arguments returns equivalent

service
remarks

type req?

params
iconpath
iconindex

us
us
int

N
N
N

file_resolve
not yet working

path
info

us
str

Y
N resolve

resolves shortcut at path and returns specified
information
for details see file.txt doc re file.resolve

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 28 of 38

Equivalents of win plugin services

service
arguments

return
s

Powerpro
equivalent remarks

type req
?

sendcopydata
string
target
dwData

us
captionlist
int

Y
Y
N

1/0 win.
sendcopydata

sends string held in string to target
window using WM_COPYDATA
details.

keys string
raw

us
bool (0/1)

Y
N - win.keys,

*Keys sends keys. details.

sendcopydata: Haven’t tested, I don’t ASAIK an application that responds to WM_COPYDATA messages containing unicode
strings.

keys: All the {}codes defined for the *Keys command work, with the exception of:
o obsolete codes: {cmdsep}, {param}, {clip}, {var}

o method (speed) codes: {fast}, {slow} and {sinp}. In the current version of unicode.keys, only SendInput is used; I don’t
think any other method is possible.

o {to folder} and {filemenu}.

These omitted {} codes will be accepted as valid input to unicode.keys, but will be silently ignored.
The sticky modifiers{alt}, {at}, {shift}, {sh}, {ctrl}, {co}, {win} and {wi} are implemented, as are % (for Alt), ^ (for Ctrl) and + (for
Shift); however in your application they may have odd or no effects when combined with unicode characters.
{file path [, file_type]} sends the contents of a file at path as keystrokes; use the same file format as documented for *keys
(including the rules for comments). file_type isn’t required if the file is a UTF-16 file.
The raw parameter, if absent, assumed 0; if present and 1, string is sent without parsing the special characters {}%^+

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 29 of 38

Notes on file services:
file_open: Minimally, you may wish only to use file_open to open a file whose path or file
name needs to be specified in unicode.
mode may be "r" (opens the file to be read); "w" (opens the file to be written; will be
overwritten if it exists); or "a" (opens the file to have new information written after existing
information). If omitted, "r" is assumed.
format (case-insensitive) parameter specifies the format of file contents, and determines
what the bom (case-insensitive) parameter means:

this
word

or
this

letter
means format

is
read
ops

return

bom = 1 or absent bom = 0

mode = "w" mode = "r" mode =
"w"

mode =
"r"

utf16
utf-16
unicode

u UTF-16 h_us start file with
\xFF\xFE

discard
leading \xFF\
xFE if present

no BOM
added

no BOM
discarded

utf8
utf-8 8 UTF-8 h_us *

start file with
\xEF\xBB\xBF

discard
leading \xEF\
xBB\xBF if
present

no BOM
added

no BOM
discarded

utf8u
utf-8u 8u UTF-8 h_us

utf8a
utf-8a 8a UTF-8 str

mbcs m
ANSI multibyte
character
stream

h_us

ascii a plain ascii str
bom ignored

text t plain ascii plain
ascii

You should set bom to zero if the ultimate consumer(s) of the unicode file you are writing
won’t recognise a byte-order mark, or if you know the unicode file you wish to read has no
byte-order mark.
* By default, utf8 is the same as utf8u. You can change that option with the
set_utf8_default service, which takes either “a” (“utf” then means "return read results from
UTF-8 files as ascii strings" i.e. same as utf8a) or “u” (“utf” then means "return read results
as handles to utf strings" i.e. same as utf8u) as an option. The option remains in force until
you unload the plugin or call set_utf8_default again.

file_readstring, file_readline: The maximum line length starts at 4K bytes
(therefore 2K unicode characters) but can be set as large as 64K bytes with
unicode_file.setmaxline.
If the file_open used to obtain the handle of the file being read was called with
format UTF-8, UTF-16 or MBCS, an h_us return will be returned; if ascii format was
specified, a plain string will returned

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 30 of 38

file_readall: content taken to be UTF-16, unless format specified. format words and letters
are as for file_open. What gets returns as for file_readstring, file_readline (see above).

file_writeall: writes the provided string to a file in UTF-16, unless format specified. format
words and letters are as for file_open. The file is created at path.
If append is "a", "A" or 1, appends rather than creating new file.

If bom is 1 or absent and format is ‘u’, the BOM \xFF\xFE is prefixed to file before string.
If bom is 1 or absent and format is ‘8’, the BOM \xEF\xBB\xBF is prefixed to file before string.

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 31 of 38

file_copy, file_move: The second path can be either a folder name or a full file name. If
third argument is present and starts with digit "1", no error messages will be produced.
file_setdate, file_getdate type parameter: the date set or fetched is:

last modified if type omitted or type = "m" or "M"
created if type = "c" or "C"

file_allfiles: For each file found in folder, _file_ is set to a h_us which can be used in the
script cmd. The script cmd or subsequent scripts must release that handle. The bar (|)
syntax, available in file.allfiles, can't be used in this service.
file_watchfolder: When there's a relevant change in the watched folder, _file_ is set to an
h_us, and cmd(,) executes with same h_us as argument. The script cmd or subsequent
scripts must release that handle. I suggest you don't execute unicode.unload in the cmd
script. Powerpro may not like it.
file_listfiles: returns a string which is list of handles to all the file names (treated as unicode
strings) in the folder given by path. This won’t work if there more than 256 files to get
handles for, because of the plugin limit on the number of handles that can be held. After
calling file_listfiles you should release all the handles returned (which you can recover using
the line function: nb not unicode.line, just the plain PowerPro line function).

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 32 of 38

9.0 Restrictions

10.0 Using unicode Plugin from Other Plugins

The unicode.dll exports various functions that can be used to support unicode data in other
plugins.
You get at those functions via a PPUNICODESERVICES which you can either copy from
here:

struct PPUNICODESERVICES
{
 BOOL (* bFreeSpace) ();
 WCHAR* (* get) (IN LPSTR);
 BOOL (* add) (IN WCHAR*, LPSTR, PPROSERVICES*);
 BOOL (* remove) (IN LPSTR);
 BOOL (* modify) (IN WCHAR*, LPSTR, PPROSERVICES*);
 BOOL (* addmake) (IN WCHAR*, LPSTR, PPROSERVICES*);
 INT (* getsize) (IN LPSTR);
};

or get from handleCollection.h, which is in the unicode plugin archive under the folder
callingFromOtherPlugins, along with a sample application.

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 33 of 38

10.1 Exported Functions

These five functions are exported from unicode.dll for use in other plugins, as members of
the UNICODESERVICES struct:
BOOL bFreeSpace()

Call this function to see if there'sfree space in the handle collection held by the unicode plugin.

WCHAR* get(IN LPSTR pszHandle)
Call this function to use retrieve a Unicode string from handle pszHandle.

Returns the NULL pointer if the handle is invalid.

BOOL add(IN WCHAR* pwszString, OUT LPSTR pszHandle, IN PPROSERVICES* ppsv)
Call this function to add a unicode string to the collection held by the unicode plugin.

pwszString: the unicode string to add.

pszHandle: handle returned if unicode string added successfully.

ppsv: the PPROSERVICES* pointer passed into every service

Returns 1/0 if successful/failure. pwszString is assumed to be on the heap and will be deallocated
by a call to free().

BOOL remove(IN LPSTR pszHandle)
Call this function to remove a Unicode string with previously issued handle pszHandle.

BOOL modify(IN WCHAR* pwszString, INOUT LPSTR pszHandle, IN PPROSERVICES*
ppsv);

Call this function to modify an existing Unicode string with previously issued handle pszHandle.

If pszHandle refers to the null Unicode string, a new handle is issued and stored in pszHandle.

If the existing unicode string pointed to by pszHandle is the same size or larger than pwszString,
it's copied into the existing string buffer. Otherwise pwszString is duplicated on the heap and that
duplicate becomes the stored string buffer.

BOOL addmake(IN WCHAR* pwszString, OUT LPSTR pszHandle, IN PPROSERVICES*
ppsv)

As add, above, but pwszString is not assumed to be on the heap; it's duplicated on the heap, and
the result added, and deallocated by a call to free().

INT getsize(IN LPSTR pszHandle)
gets size of buffer in wide characters (usually same size as unicode string) associated with
previously issued handle pszHandle. unicode.empty() creates an empty buffer of the specified
length (plus one).

You access all the above via an exported function
struct PPUNICODESERVICES* getUnicodeServices()

which you can use to get a pointer to the PPUNICODESERVICES struct you need to do
everything else.

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 34 of 38

10.2 Using the Exported Functions

Two choices: static or dynamic linking
If you want to link statically, you need handleCollection.h from the callingFromOtherPlugins
folder of the unicode plugin archive, and in VC++ you need to link with unicode.lib. The bad
news: unicode.dll will have to be on your path, i.e. the folder <PowerPro Installation
folder>\plugins will have to be added to the PATH environmental variable.
Probably easier to add a bit of code to your plugin DllMain that finds unicode.dll, sets up a
function pointer to getUnicodeServices(), then calls it to get a pointer to the
PPUNICODESERVICES struct.
You can just copy relevant code from samplePlugin.c in sampleDependentPlugin.zip, which
has sample code and projects to make a simple plugin that uses unicode.dll. See the next
section.

10.3 Sample Plugin Using unicode.dll Functions

samplePlugin.zip in the unicode distribution includes the following files.
samplePlugin.c
PowerProDefines.h: you must include these two files to compile the sample plugin. The

source file has the code necessary to dynamically load and link to the
functions listed above.

samplePlugin.dsp
samplePlugin.dsw: A VC6++ project including above header and source file. You can

probably get it to run in VC5++ just by editing the workspace file, and in
VC7++, which should convert the files to its own format.

samplePlugin.dev
Makefile.win: A Dev-Cpp/mingw project file and generated mingw make file.
sample.powerpro: You have to move the dll generated by one of the above projects to your

plugins folder before you run this script.
The enclosed projects will generate a plugin, sampleUnicodeClientPlugin.dll in the project
folder. If you want to use a debugger, you’ll have to alter the project to create the dll in the
<PowerProFolder>\plugins folder.

11.0 Possible Enhancements

It would be very easy to increase the maximum number of unicode strings that can be dealt
with at once.
Might be able to fix file_createshortcut and file_resolve, which don’t work at the moment.
Working on it.
Might be able to provide hooks from other plugins (ini? reg? net? pop?) into this one, so you
could perhaps read unicode out on an ini file or specify a url to one of the the net plugin
webpage services. Let me know via forum if there's any demand.

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 35 of 38

12.0 Change History

.69:
• fixed bug in inputDialog service

• fixed bug in keys service (which crashed if raw parameter specified)

• added pdf version of documentation

• added version resource

• added a destroy alias for the release service

• added unicodePluginFunctions.txt to be used as a file menu, perhaps merged with
pprofunctions.txt.

.67:
• added to_utf8 service

.65:
• added set_base, get_base and configuration ini key indexBase, which control whether

indexing starts at 0 or 1 in set_chars and get_chars

• added modify() and addmake() members to set of exported functions for use by other
plugins, and corrected documentation for others.

• fixed an obscure bug in the set of exported functions which might have resulted in a
ommory leak when unicode plugin interacted with other plugins.

• I added slice, find and revfind 0-based services a few version ago, but forgot to update
all the documentation. Mea culpa.

.63:
• added second "raw" parameter to keys service.

.61:
• fixed spaces in sendkeys service.

.60:
• Fixed get_char and set_char (and equivalent using []s); they were broke; also they

now take up to two position arguments, as well as a type argument, and…

• set_char name changed to set_chars (but still has set_char as an alias).

• get_char name changed to get_chars (but still has get_char as an alias).

• Fixed file_readall so it don’t crash on files larger than a few meg.

• Added type argument for get_chars, set_chars, and a set_default_get_type service to
allow setting behaviour of set_chars and get_chars when invoked without a type
argument (e.g. via the target[position] syntax)

• Added slice, find and revfind – 0-based equivalents of select, index and revindex

• Fixed case("title", str) where str ends in blanks

• Added optional third argument for delimiters to word service

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 36 of 38

• Added squeeze, reverse and rotate services
.58:

• added sendcopydata service.

• added keys service, providing most of the options available with the *Keys command
.56:

• added empty service, allowing creating of empty buffer to receive a unicode string

• added the to_binary service

• Fixed a bug that caused inputdialog and messagebox to misbehave

• added aliases to various services, e.g. str_select for select, ascii for to_ascii. Aliases
show up in the tables of services as italicised names

.54:
• renamed create_from_utf8 to from_utf8
• renamed convert_to_ascii to to_ascii
• added from_mbcs

• changed parameters for file_open, file_readstring, file_readline, file_writeline,
file_writestring: now type of file content specified in second parameter of file_open,
not in second parameter of handle-dependent file_read* and file_write* services.

• type of file content (format) for file_open, file_readall and file_writeall can be utf8;
modifier to utf8 determines if read operations produce plain ascii strings or handles to
Unicode strings; the service set_utf8_default determines what’s mean when you
specify just “utf8” without a modifier

• mbcs now supported for all file reading and writing services.

• the format parameter of file_readall and file_writeall can now be words as well as
letters (and are exactly the same as the valid format parameters for file_open)

• handle.service syntax now supported for file handles returned by file_open as well as
for unicode string handles

• fixed bug which caused unicode.release_all to crash PowerPro

• fixed bug in inputdialog causing crash on second call

• clarified that file_setmaxline sets number of bytes available for a file_readstring or
file_readline, not characters.

.52:
• Change the order of arguments in change_case to allow handle.service syntax to

work

• If you have PowerPro version 4.04.11 or later, handles returned by a service but
neither assigned nor returned via quit (i.e., used as intermediate results in an
expression) will be automatically released once the expression is evaluated

.50:
• Support for handle.service syntax for handles to unicode strings

.48:

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 37 of 38

• Bruce (will change)/(has changed) the mechanism for the automatic destruction of
handles (see here) held in local variables as of PowerPro 4.4.07. This version of the
unicode plugin is compatible with 4.4.07 or earlier.

.44:
• added version service.

• test scripts now run from any folder, not just <PowerProInstallation>\scripts folder.

• handles to unicode strings now are prefixed "u\x05".

• handles assigned to local variables will automatically be released when local goes
out of scope, unless you've used the new localcopy service to override.

.42:
• added release_all service

.40:
Playing catch-up with Bruce, reflecting changes in PowerPro 4.3.06:

• added file_size64

• scripts run from file_allfiles now respect script cancel if error
.39:

Playing catch-up with Bruce, reflecting changes in PowerPro 4.3.04a:

• added file_runaswait
• fixed file_watchfolder to allow rename in watched folder

• added no error flag for file_move, file_copy
.37:

• added service create_from_utf8 that returns a handle to a UTF-16 string.

• added parameters to file_open allowing specification of whether file content is UTF-
16 or UTF-8

• combined file_readstringu and file_readstringa services, and added a parameter to
resulting file_readstring to allow specification of file content type: ANSI or unicode.

• combined file_writestringu and file_writestringa services, and added a parameter
to resulting file_writestring to allow specification of file content type: ANSI or
unicode.

• combined file_readlineu and file_readlinea services, and added a parameter to
resulting file_readline to allow specification of file content type: ANSI or unicode.

• combined file_ writelineu and file_ writelinea services, and added a parameter to
resulting file_ writeline to allow specification of file content type: ANSI or unicode.

• combined file_readallu and file_readalla services, and added a parameter to
resulting file_readall to allow specification of file content type: ANSI, UTF-16 or UTF-
8.

• combined file_ writeallu and file_ writealla services, and added a parameter to
resulting file_ writeall to allow specification of file content type: ANSI or UTF-16.

unicode plugin v .69
17 April 2009

a PowerPro plugin to allow use of unicode
by Alan Campbell

page 38 of 38

• removed encodeUnicode.exe from distribution; its function is now implemented by
the encodeUnicode.powerpro script

.35:
• changed name of encoded service to decode
• added encode service.

• added inputDialog service
.33:

• Added file_runas service
.31:

• Added file_version service
.30:

• First version

	1.0 Overview
	1.1 This Document
	1.2 What’s New In This Version

	2.0 Requirements
	2.1 Reporting Bugs, Requesting Enhancements
	3.0 File list
	4.0 Installation
	5.0 UnInstall
	6.0 Acknowledgements
	7.0 Testing
	8.0 Usage
	8.1 Handles and Unicode String Storage
	8.2 Making Unicode Strings
	8.3 How to Input Literal Unicode
	8.4 Using Unicode Strings
	8.5 The Configuration Ini File
	8.6 The Services
	8.6.1 Service Argument Types
	Services without direct equivalents in Powerpro
	Equivalents of Powerpro functions that do UI things
	Equivalents of Powerpro functions that manipulate strings
	Equivalents of clip plugin services
	Equivalents of file plugin services
	Equivalents of win plugin services

	9.0 Restrictions
	10.0 Using unicode Plugin from Other Plugins
	10.1 Exported Functions
	10.2 Using the Exported Functions
	10.3 Sample Plugin Using unicode.dll Functions

	11.0 Possible Enhancements
	12.0 Change History

